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Learning components
A loss function: 

● cross-entropy loss 

An optimization algorithm: 

● stochastic gradient descent
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Hyperparameters
The learning rate η is a hyperparameter 
● too high: the learner will take big steps and overshoot
● too low: the learner will take too long 

Hyperparameters:

● Briefly, a special kind of parameter for an ML model
● Instead of being learned by algorithm from supervision (like regular parameters), 

they are chosen by algorithm designer.
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Mini-batch training
Stochastic gradient descent chooses a single random example at a time. 

That can result in choppy movements 

More common to compute gradient over batches of training instances. 

Batch training: entire dataset 

Mini-batch training: m examples (512, or 1024)
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Overfitting
A model that perfectly match the training data has a problem.

It will also overfit to the data, modeling noise

● A random word that perfectly predicts y (it happens to only occur in one class) 
will get a very high weight.

● Failing to generalize to a test set without this word. 

A good model should be able to generalize
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Regularization
A solution for overfitting

Add a regularization term R(θ) to the loss function (for now written as maximizing 
logprob rather than minimizing loss)

Idea: choose an R(θ) that penalizes large weights

● fitting the data well with lots of big weights not as good as fitting the data a little 
less well, with small weights
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L2 regularization (ridge regression)
The sum of the squares of the weights

L2 regularized objective function:
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L1 regularization (=lasso regression)
The sum of the (absolute value of the) weights

L1 regularized objective function:
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Multinomial Logistic Regression
Often we need more than 2 classes

● Positive/negative/neutral
● Parts of speech (noun, verb, adjective, adverb, preposition, etc.)
● Classify emergency SMSs into different actionable classes

If >2 classes we use multinomial logistic regression
= Softmax regression 
= Multinomial logit 
= (defunct names : Maximum entropy modeling or MaxEnt

So "logistic regression" will just mean binary (2 output classes)
10
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Multinomial Logistic Regression
The probability of everything must still sum to 1

P(positive|doc) + P(negative|doc) + P(neutral|doc) = 1

Need a generalization of the sigmoid called the softmax
● Takes a vector z = [z1, z2, ..., zk] of k arbitrary values
● Outputs a probability distribution
● each value in the range [0,1]
● all the values summing to 1

We’ll discuss it more when we talk about neural networks
11
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Components of a probabilistic machine learning classifier

Given m input/output pairs (x(i), y(i)):

1. A feature representation for the input. For each input observation x(i), a vector 
of features [x1, x2, …, xn]. Feature j for input  x(i) is xj, more completely x1

(i), or 
sometimes fj(x).

2. A classification function that computes ŷ the estimated class, via p(y|x), like 
the sigmoid or softmax functions

3. An objective function for learning, like cross-entropy loss

4. An algorithm for optimizing the objective function: stochastic gradient 
descent
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Language modeling

13

a very large 
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● NL∈ {Mandarin Chinese, Hindi, Spanish, Arabic, English, … Inuktitut, Njerep}

● Automation of NLs: 

○ analysis of (“understanding”) what a text means, to some extent ( NL → R  )

○ generation of fluent, meaningful, context-appropriate text (R  → NL )

○ acquisition of R  from knowledge and data

What is Natural Language Processing (NLP)?
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My legal name is Alexander Perchov. 
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My legal name is Alexander Perchov. But all of my 
many friends dub me Alex, because that is a more 
flaccid-to-utter version of my legal name. 
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My legal name is Alexander Perchov. But all of my 
many friends dub me Alex, because that is a more 
flaccid-to-utter version of my legal name. Mother 
dubs me Alexi-stop-spleening-me!, because I am 
always 
spleening her. 
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My legal name is Alexander Perchov. But all of my 
many friends dub me Alex, because that is a more 
flaccid-to-utter version of my legal name. Mother 
dubs me Alexi-stop-spleening-me!, because I am 
always 
spleening her. If you want to know why I am always 
spleening her, it is because I am always elsewhere 
with friends, and disseminating so much currency, 
and performing so many things that can spleen a 
mother. 
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My legal name is Alexander Perchov. But all of my 
many friends dub me Alex, because that is a more 
flaccid-to-utter version of my legal name. Mother 
dubs me Alexi-stop-spleening-me!, because I am 
always 
spleening her. If you want to know why I am always 
spleening her, it is because I am always elsewhere 
with friends, and disseminating so much currency, 
and performing so many things that can spleen a 
mother. Father used to dub me Shapka, for the fur 
hat I would don even in the summer month. 
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My legal name is Alexander Perchov. But all of my 
many friends dub me Alex, because that is a more 
flaccid-to-utter version of my legal name. Mother 
dubs me Alexi-stop-spleening-me!, because I am 
always 
spleening her. If you want to know why I am always 
spleening her, it is because I am always elsewhere 
with friends, and disseminating so much currency, 
and performing so many things that can spleen a 
mother. Father used to dub me Shapka, for the fur 
hat I would don even in the summer month. He 
ceased dubbing me that because I ordered him to 
cease dubbing me that. It sounded boyish to me, and 
I have always thought of myself as very potent and 
generative. 21
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Language models play the role of ...
● a judge of grammaticality
● a judge of semantic plausibility
● an enforcer of stylistic consistency
● a repository of knowledge (?)
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● Assign a probability to every sentence (or any string of words)
○ finite vocabulary (e.g. words or characters) {the, a, telescope, …}
○ infinite set of sequences

■ a telescope STOP
■ a STOP
■ the the the STOP 
■ I saw a woman with a telescope STOP
■ STOP
■ ...

The Language Modeling problem

23
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The Language Modeling problem
● Assign a probability to every sentence (or any string of words)

○ finite vocabulary (e.g. words or characters) 
○ infinite set of sequences
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p(disseminating so much currency STOP) = 10-15

p(spending a lot of money STOP) = 10-9

25



Undergrad NLP 2022Yulia Tsvetkov

● Speech recognition: we want to predict a sentence given acoustics

Motivation

        s              p  ee           ch           l      a          b
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● Speech recognition: we want to predict a sentence given acoustics

the station signs are indeed in english -14725

the station signs are in deep in english -14732

the stations signs are in deep in english -14735

the station signs are in deep into english -14739

the station 's signs are in deep in english -14740

the station signs are in deep in the english -14741

the station 's signs are indeed in english -14760

the station signs are indians in english -14790

the station signs are indian in english -14799

the stations signs are indians in english -14807

the stations signs are indians and english -14815

Motivation
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Motivation

28

● Machine translation
○ p(strong winds) > p(large winds)

● Spelling correction
○ The office is about fifteen minuets from my house
○ p(about fifteen minutes from)  > p(about fifteen minuets from)

● Speech recognition 
○ p(I saw a van) >> p(eyes awe of an) 

● Summarization, question-answering, handwriting recognition, OCR, etc.
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Equivalent definition
● Language Modeling is the task of predicting what word comes next
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Equivalent definition
● Language Modeling is the task of predicting what word comes next

● More formally: given a sequence of words x(1), x(2), … x(t)  

compute the probability distribution if the next word x(t+1)  

Where  x(t+1) can be any word in the vocabulary V={ w1, w2, …w|V|}  
  

30
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We use Language Models every day

31
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We use Language Models every day
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Language Modeling
● If we have some text, then the probability of this text (according to the Language 

Model) is:

33

This is what our LM provides
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n-gram Language Models

● Question: How to learn a Language Model?

34

“I have a dog whose name is Lucy. I have two cats, they like playing with Lucy.”
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● Assume we have n training sentences 
● Let x1, x2, …, xn be a sentence, and c(x1, x2, …, xn) be the number of times it 

appeared in the training data. 
● Define a language model:

● No generalization! 

           

A trivial model
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n-gram Language Models

● Question: How to learn a Language Model?
● Answer (pre- Deep Learning): learn an n-gram Language Model!

36
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n-gram Language Models

● Definition: An n-gram is a chunk of n consecutive words.

37

“I have a dog whose name is Lucy. I have two cats, they like playing with Lucy.”
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n-gram Language Models

● Definition: An n-gram is a chunk of n consecutive words.
○ unigrams: {I, have, a, dog, whose, name, is, Lucy, two, cats, they, like, playing, with}

38
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n-gram Language Models

● Definition: An n-gram is a chunk of n consecutive words.
○ unigrams: {I, have, a, dog, whose, name, is, Lucy, two, cats, they, like, playing, with}
○ bigrams: {I have, have a, a dog, dog whose, … , with Lucy}

39
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n-gram Language Models

● Definition: An n-gram is a chunk of n consecutive words.
○ unigrams: {I, have, a, dog, whose, name, is, Lucy, two, cats, they, like, playing, with}
○ bigrams: {I have, have a, a dog, dog whose, … , with Lucy}     have cats

40

“I have a dog whose name is Lucy. I have two cats, they like playing with Lucy.”
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n-gram Language Models

● Definition: An n-gram is a chunk of n consecutive words.
○ unigrams: {I, have, a, dog, whose, name, is, Lucy, two, cats, they, like, playing, with}
○ bigrams: {I have, have a, a dog, dog whose, … , with Lucy}     have cats
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n-gram Language Models

● Definition: An n-gram is a chunk of n consecutive words.
○ unigrams: {I, have, a, dog, whose, name, is, Lucy, two, cats, they, like, playing, with}
○ bigrams: {I have, have a, a dog, dog whose, … , with Lucy}  
○ trigrams: {I have a, have a dog, a dog whose, … , playing with Lucy}   

42
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n-gram Language Models

● Definition: An n-gram is a chunk of n consecutive words.
○ unigrams: {I, have, a, dog, whose, name, is, Lucy, two, cats, they, like, playing, with}
○ bigrams: {I have, have a, a dog, dog whose, … , with Lucy}  
○ trigrams: {I have a, have a dog, a dog whose, … , playing with Lucy}   
○ four-grams: {I have a dog, … , like playing with Lucy}   
○ …

43
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n-gram Language Models

● w1 – a unigram
● w1 w2 – a bigram
● w1 w2  w3  – a trigram
● w1w2 …wn  – an n-gram

44
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n-gram Language Models

● Question: How to learn a Language Model?
● Answer (pre- Deep Learning): learn an n-gram Language Model!

● Idea: Collect statistics about how frequent different n-grams are and use these 
to predict next word

45
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unigram probability

● corpus size m = 17
● P(Lucy) = 2/17; P(cats) = 1/17

● Unigram probability: 

46
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bigram probability

47
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trigram probability
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n-gram probability
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Sentence/paragraph/book probability

50

How to estimate?
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Markov assumption

51

● We make the Markov assumption: x(t+1) depends only on the 
preceding n-1 words
○ Markov chain is a “…stochastic model describing a sequence of possible 

events in which the probability of each event depends only on the state 
attained in the previous event.”

assumption

n-1 words
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Markov assumption

52

or maybe even
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Chain rule 

First-order Markov process
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Chain rule

Markov assumption 

First-order Markov process

54
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● Relax independence assumption: 

Second-order Markov process: 
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● Relax independence assumption: 

● Simplify notation: 

Second-order Markov process: 

56
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● A trigram language model contains 
○ a vocabulary V
○ a non negative parameters q(w|u,v) for every trigram, such that

○ the probability of a sentence x1, …, xn, where xn=STOP is 

3-gram LMs

57
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Example

58
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Example

59



Undergrad NLP 2022Yulia Tsvetkov

Example

60
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● can you tell me about any good cantonese restaurants close by

● mid priced that food is what i’m looking for 

● tell me about chez pansies

● can you give me a listing of the kinds of food that are available

● i’m looking for a good place to eat breakfast

● when is caffe venezia open during the day

Berkeley restaurant project sentences
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Raw bigram counts (~1000 sentences)
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Bigram probabilities
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P(<s> i want chinese food </s>) =

P(i|<s>)   

×  P(want|i)  

×  P(chinese|want)   

×  P(food|chinese)   

×  P(</s>|food)

=  …

 

 

64

Bigram estimates of sentence probability
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P(to|want) = 0.66

P(chinese|want) = 0.0065

P(eat|to) = 0.28

P (i|<s>) = 0.25

P(food|to) = 0.0

P(want|spend) = 0.0

65

What can we learn from bigram estimates?
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Sampling from a language model

66
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Sampling from a language model
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Sampling from a language model
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Sampling from a language model

69
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Practical issues
● Multiplying very small numbers results in numerical underflow

○ we do every operation in log space
○ (also adding is faster than multiplying)
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●  We would want to model longer dependencies

Markovian assumption is false
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● Maximum likelihood for estimating q
○ Let c(w1, …, wn) be the number of times that n-gram appears in a corpus

○ If vocabulary has 20,000 words ⇒ Number of parameters is 8 x 1012! 

Sparsity

72
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● Given a corpus of length M

Bias-variance tradeoff
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● For most N‐grams, we have few observations
● General approach: modify observed counts to improve estimates

○ Back‐off:
■ use trigram if you have good evidence; 
■ otherwise bigram, otherwise unigram

○ Interpolation: approximate counts of N‐gram using combination of estimates from 
related denser histories

○ Discounting:  allocate  probability mass for unobserved events by discounting counts 
for observed events

Dealing with sparsity
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● We often want to make estimates from sparse statistics:

● Smoothing flattens spiky distributions so they generalize better:

▪ Very important all over NLP, but easy to do badly

P(w | denied the)
  3 allegations
  2 reports
  1 claims
  1 request
  7 total
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P(w | denied the)
  2.5 allegations
  1.5 reports
  0.5 claims
  0.5 request
  2 other
  7 total

Discounting/smoothing methods

75



Undergrad NLP 2022Yulia Tsvetkov

● Combine the three models to get all benefits

Linear interpolation
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● Define a special OOV or “unknown” symbol <unk>. Transform some (or all) rare 
words in the training data to <unk>
○ You cannot fairly compare two language models that apply different <unk> 

treatments
● Build a language model at the character level

Dealing with Out-of-vocabulary terms
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● Extrinsic evaluation: build a new language model, use it for some task (MT, 
ASR, etc.)

● Intrinsic: measure how good we are at modeling language

Evaluation

79

build language 
model from a

train set

tune the model’s 
parameters on a 

validation set

evaluate the 
model on a

test set
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Extrinsic evaluation of N-gram models
● Best evaluation for comparing models A and B

○ Put each model in a task
■ spelling corrector, speech recognizer, MT system

○ Run the task, get an accuracy for A and for B
■ How many misspelled words corrected properly
■ How many words translated correctly

● Compare accuracy for A and B

80
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Difficulty of extrinsic (in-vivo) evaluation of N-gram models

● Extrinsic evaluation
○ Time-consuming; can take days or weeks

So

● Sometimes use intrinsic evaluation: perplexity
○ Bad approximation

■ unless the test data looks just like the training data
○ So generally only useful in pilot experiments
○ But is helpful to think about
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● Test data: S = {s1, s2, …, ssent}
○ parameters are estimated on training data

○ sent is the number of sentences in the test data

Evaluation: perplexity
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● Test data: S = {s1, s2, …, ssent}
○ parameters are estimated on training data

○ sent is the number of sentences in the test data

Evaluation: perplexity
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● Test data: S = {s1, s2, …, ssent}
○ parameters are estimated on training data

○ sent is the number of sentences in the test data

Evaluation: perplexity
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● Test data: S = {s1, s2, …, ssent}
○ parameters are estimated on training data

○ sent is the number of sentences in the test data
○ M is the number of words in the test corpus

Evaluation: perplexity
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● Test data: S = {s1, s2, …, ssent}
○ parameters are estimated on training data

○ sent is the number of sentences in the test data
○ M is the number of words in the test corpus
○ A good language model has high p(S) and low perplexity

Evaluation: perplexity
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● Language models are distributions over sentences

● N-gram models are built from local conditional probabilities

● The methods we’ve seen are backed by corpus n-gram counts

Language models

87


