

Natural Language Processing

Neural networks

Yulia Tsvetkov

yuliats@cs.washington.edu

With many slides by Dan Jurafsky

Yulia Tsvetkov

Readings

- Neutral networks chapter in J&M 3
- Advanced tutorial
- Hundreds of blog posts and tutorials

Lexical semantics

- How should we represent the meaning of the word?
 - Words, lemmas, senses, definitions

Problems with discrete representations

- Too coarse
 - \circ expert \leftrightarrow skillful
- Sparse
 - wicked, badass, ninja
- Subjective
- Expensive
- Hard to compute word relationships

S: (adj) full, good
S: (adj) estimable, good, honorable, respectable
S: (adj) beneficial, good
S: (adj) good, just, upright
S: (adj) adept, expert, good, practiced, proficient, skillful
S: (adj) dear, good, near
S: (adj) good, right, ripe
S: (adv) well, good
S: (adv) thoroughly, soundly, good
S: (n) good, goodness
S: (n) commodity, trade good, good

• dimensionality: PTB: 50K, Google1T 13M

Distributional hypothesis

"The meaning of a word is its use in the language"

[Wittgenstein PI 43]

"You shall know a word by the company it keeps" [Firth 1957]

If A and B have almost identical environments we say that they are synonyms. [Harris 1954]

Example

- Suppose you see these sentences:
 - Ongchoi is delicious sautéed with garlic.
 - Ongchoi is superb over rice
 - Ongchoi leaves with salty sauces
- And you've also seen these:
 - ... spinach sautéed with garlic over rice
 - Chard stems and leaves are delicious
 - Collard greens and other salty leafy greens

Ongchoi: Ipomoea aquatica "Water Spinach"

Ongchoi is a leafy green like spinach, chard, or collard greens

Yamaguchi, Wikimedia Commons, public domain

Undergrad NLP 2022

空心菜 kangkong rau muống

•••

Model of meaning focusing on similarity

• Each word = a vector

- not just "word" or word45.
- similar words are "nearby in space"
- We build this space automatically by seeing which words are nearby in text

Word embeddings or word vectors

WORD	d1	d2	d3	d4	d5		d50
summer	0.12	0.21	0.07	0.25	0.33		0.51
spring	0.19	0.57	0.99	0.30	0.02		0.73
fall	0.53	0.77	0.43	0.20	0.29	• • •	0.85
light	0.00	0.68	0.84	0.45	0.11		0.03
clear	0.27	0.50	0.21	0.56	0.25		0.32
blizzard	0.15	0.05	0.64	0.17	0.99		0.23

We'll discuss 2 kinds of embeddings

• tf-idf

- Information Retrieval workhorse!
- A common baseline model
- Sparse vectors
- Words are represented by (a simple function of) the counts of nearby words

• Word2vec

- Dense vectors
- Representation is created by training a classifier to predict whether a word is likely to appear nearby
- <u>https://fasttext.cc/docs/en/crawl-vectors.html</u>
- Later we'll discuss extensions called contextual embeddings

Word-word matrix ("term-context matrix")

	knife	dog	sword	love	like
knife	0	1	6	5	5
dog	1	0	5	5	5
sword	6	5	0	5	5
love	5	5	5	0	5
like	5	5	5	5	2

• Two words are "similar" in meaning if their context vectors are similar

• Similarity == relatedness

Term-context matrix

Two words are similar in meaning if their context vectors are similar

is traditionally followed by cherry often mixed, such as strawberry computer peripherals and personal a computer. This includes information
 pie, a traditional dessert rhubarb pie. Apple pie assistants. These devices usually available on the internet

	aardvark	 computer	data	result	pie	sugar	
cherry	0	 2	8	9	442	25	
strawberry	0	 0	0	1	60	19	
digital	0	 1670	1683	85	5	4	
information	0	 3325	3982	378	5	13	

Cosine for computing word similarity

The dot product between two vectors is a scalar:

dot product(
$$\mathbf{v}, \mathbf{w}$$
) = $\mathbf{v} \cdot \mathbf{w} = \sum_{i=1}^{N} v_i w_i = v_1 w_1 + v_2 w_2 + \dots + v_N w_N$

- The dot product tends to be high when the two vectors have large values in the same dimensions
- Dot product can thus be a useful similarity metric between vectors

Problem with raw dot-product

- Dot product favors long vectors
 - Dot product is higher if a vector is longer (has higher values in many dimension)
 Vector length:

$$|\mathbf{v}| = \sqrt{\sum_{i=1}^{N} v_i^2}$$

- Frequent words (of, the, you) have long vectors (since they occur many times with other words).
 - So dot product overly favors frequent words

Alternative: cosine for computing word similarity

$$\operatorname{cosine}(\vec{v}, \vec{w}) = \frac{\vec{v} \cdot \vec{w}}{|\vec{v}| |\vec{w}|} = \frac{\sum_{i=1}^{N} v_i w_i}{\sqrt{\sum_{i=1}^{N} v_i^2} \sqrt{\sum_{i=1}^{N} w_i^2}}$$

Based on the definition of the dot product between two vectors a and b

$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta$$
$$\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}| |\mathbf{b}|} = \cos \theta$$

Cosine examples

$$\cos(\vec{v}, \vec{w}) = \frac{\vec{v} \cdot \vec{w}}{|\vec{v}| |\vec{w}|} = \frac{\vec{v}}{|\vec{v}|} \cdot \frac{\vec{w}}{|\vec{w}|} = \frac{\sum_{i=1}^{N} v_i w_i}{\sqrt{\sum_{i=1}^{N} v_i^2} \sqrt{\sum_{i=1}^{N} w_i^2}}$$

	pie	data	computer
cherry	442	8	2
digital	114	80	62
information	36	58	1

 $\cos(\text{cherry}, \text{information}) =$

$$\frac{442*5+8*3982+2*3325}{\sqrt{442^2+8^2+2^2}\sqrt{5^2+3982^2+3325^2}} = .017$$

 $\cos(\text{digital}, \text{information}) =$

$$\frac{5*5+1683*3982+1670*3325}{\sqrt{5^2+1683^2+1670^2}\sqrt{5^2+3982^2+3325^2}} = .996$$

Count-based representations

	knife	dog	sword	love	like
knife	0	1	6	5	5
dog	1	0	5	5	5
sword	6	5	0	5	5
love	5	5	5	0	5
like	5	5	5	5	2

• Counts: term-frequency

- remove stop words
- use log10(tf)

But raw frequency is a bad representation

- The co-occurrence matrices we have seen represent each cell by word frequencies
- Frequency is clearly useful; if sugar appears a lot near apricot, that's useful information
- But overly frequent words like the, it, or they are not very informative about the context
- It's a paradox! How can we balance these two conflicting constraints?

Two common solutions for word weighting

tf-idf: tf-idf value for word t in document d:

$$w_{t,d} = \mathrm{tf}_{t,d} \times \mathrm{idf}_t$$

Words like "the" or "it" have very low idf

PMI: Pointwise mutual information

$$\mathsf{PMI}(w_1, w_2) = \log \frac{p(w_1, w_2)}{p(w_1)p(w_2)}$$

See if words like "good" appear more often with "great" than we would expect by chance

Yulia Tsvetkov

TF-IDF

• What to do with words that are evenly distributed across many documents?

$$\mathrm{tf}_{t,d} = \log_{10}(\mathrm{count}(t,d)+1)$$

Words like "the" or "good" have very low idf

$$w_{t,d} = \mathrm{tf}_{t,d} \times \mathrm{idf}_t$$

Positive Pointwise Mutual Information (PPMI)

- In word--context matrix
- Do words w and c co-occur more than if they were independent?

$$PMI(w,c) = \log_2 \frac{P(w,c)}{P(w)P(c)}$$

$$PPMI(w,c) = \max(\log_2 \frac{P(w,c)}{P(w)P(c)}, 0)$$

- PMI is biased toward infrequent events
 - Very rare words have very high PMI values
 - \circ Give rare words slightly higher probabilities α =0.75

$$PPMI_{\alpha}(w,c) = \max(\log_2 \frac{P(w,c)}{P(w)P_{\alpha}(c)}, 0) \qquad P_{\alpha}(c) = \frac{count(c)^{\alpha}}{\sum_c count(c)^{\alpha}}$$

We'll discuss 2 kinds of embeddings

• tf-idf

- Information Retrieval workhorse!
- A common baseline model
- Sparse vectors
- Words are represented by (a simple function of) the counts of nearby words

• Word2vec

- Dense vectors
- Representation is created by training a classifier to predict whether a word is likely to appear nearby
- <u>https://fasttext.cc/docs/en/crawl-vectors.html</u>
- Later we'll discuss extensions called contextual embeddings

This is in your brain

By BruceBlaus - Own work, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=28761830

Neural Network Unit (this is not in your brain)

Neural unit

• Take weighted sum of inputs, plus a bias

$$z = b + \sum_{i} w_{i} x_{i}$$
$$z = w \cdot x + b$$

• Instead of just using z, we'll apply a nonlinear activation function f:

$$y = a = f(z)$$

Non-Linear Activation Functions

• We've already seen the sigmoid for logistic regression:

Final function the unit is computing

$$y = \sigma(w \cdot x + b) = \frac{1}{1 + \exp(-(w \cdot x + b))}$$

Binary Logistic Regression as a 1-layer network

Non-Linear Activation Functions besides sigmoid

Final unit again

Feedforward Neural Networks

Can also be called multi-layer perceptrons (or MLPs) for historical reasons
 o (we don't count the input layer in counting layers!)

Multinomial Logistic Regression as a 1-layer Network

softmax: a generalization of sigmoid

• For a vector \mathbf{z} of dimensionality \mathbf{k} , the softmax is:

softmax(z) =
$$\begin{bmatrix} \exp(z_1) \\ \sum_{i=1}^{k} \exp(z_i) \end{bmatrix}, \frac{\exp(z_2)}{\sum_{i=1}^{k} \exp(z_i)}, \dots, \frac{\exp(z_k)}{\sum_{i=1}^{k} \exp(z_i)} \end{bmatrix}$$
softmax(z_i) =
$$\frac{\exp(z_i)}{\sum_{j=1}^{k} \exp(z_j)} \quad 1 \le i \le k$$

Example:

$$z = [0.6, 1.1, -1.5, 1.2, 3.2, -1.1]$$

softmax(z) = [0.055, 0.090, 0.006, 0.099, 0.74, 0.010]

softmax

Two-Layer Network with softmax output

Replacing the bias unit

Instead of:

We'll do this:

Learning the weights

- **Cross-entropy loss**
- Backpropagation algorithm

Algorithm 1 Backpropagation Algorithm

```
1: procedure TRAIN
```

- $X \leftarrow$ Training Data Set of size mxn 2:
- $y \leftarrow \text{Labels for records in X}$ 3:
- $w \leftarrow$ The weights for respective layers 4:
- $l \leftarrow$ The number of layers in the neural network, 1...L 5:

i, j

6:
$$D_{ij}^{(l)} \leftarrow$$
 The error for all l,
7: $t_{ij}^{(l)} \leftarrow 0$. For all l,i,j

7:
$$t_{ij} \leftarrow 0$$
. For all 1.
8: For $i = 1$ to m

12:

16:

$$\begin{array}{ccc} \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{array} = \begin{bmatrix} \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0$$

9:
$$a^{l} \leftarrow feedforward(x^{(i)}, w)$$

10: $d^{l} \leftarrow a(L) - y(i)$

10:
$$d^* \leftarrow a(L) - y(i)$$

11: $t_{ii}^{(l)} \leftarrow t_{ii}^{(l)} + a_i^{(l)} \cdot t_i^{l+1}$

if
$$j \neq 0$$
 then

13:
$$D_{ij}^{(l)} \leftarrow \frac{1}{m} t_{ij}^{(l)} + \lambda w_{ij}^{(l)}$$

14: else

15:
$$D_{ij}^{(l)} \leftarrow \frac{1}{m} t_{ij}^{(l)}$$

where
$$\frac{\partial}{\partial w_{ij}^{(l)}} J(w) = D_{ij}^{(l)}$$

Applying neural networks to NLP tasks

Use cases for feedforward networks

- Word representations
- Text classification
- Language modeling

State of the art systems use more powerful neural architectures (we will learn transformers architectures on Monday), but simple models are useful to consider!

Distributed representations

Word Vectors

WORD	d1	d2	d3	d4	d5		d50
summer	0.12	0.21	0.07	0.25	0.33		0.51
spring	0.19	0.57	0.99	0.30	0.02		0.73
fall	0.53	0.77	0.43	0.20	0.29	• • •	0.85
light	0.00	0.68	0.84	0.45	0.11		0.03
clear	0.27	0.50	0.21	0.56	0.25		0.32
blizzard	0.15	0.05	0.64	0.17	0.99		0.23

"One hot" vectors and dense word vectors (embeddings)

Low-dimensional word representations

- Learning representations by back-propagating errors
 - Rumelhart, Hinton & Williams, 1986
- A neural probabilistic language model
 - Bengio et al., 2003
- Natural Language Processing (almost) from scratch
 - Collobert & Weston, 2008
- Word representations: A simple and general method for semi-supervised learning
 - Turian et al., 2010
- Distributed Representations of Words and Phrases and their Compositionality
 - Word2Vec; Mikolov et al., 2013

Word2Vec

- Popular embedding method
- Very fast to train
- Code available on the web
- Idea: predict rather than count

Word2Vec

INPUT PROJECTION OUTPUT INPUT PROJECTION OUTPUT w(t-2) w(t-2) w(t-1) w(t-1) SUM w(t) w(t) w(t+1) w(t+1) w(t+2) w(t+2) Skip-gram **CBOW**

• [Mikolov et al.' 13]

• Predict vs Count

the cat sat on the mat

• Predict vs Count

context size = 2

• Predict vs Count

the <u>cat</u> sat on the mat

context size = 2

Predict vs Count

the cat <u>sat</u> on the mat

context size = 2

• Predict vs Count

the cat sat <u>on</u> the mat

Skip-gram

context size = 2

• Predict vs Count

the cat sat on <u>the</u> mat

Skip-gram

context size = 2

• Predict vs Count

the cat sat on the <u>mat</u>

context size = 2

• Predict vs Count

INPUT

PROJECTION

OUTPUT

Skip-gram Prediction

Yulia Tsvetkov

How to compute p(+|t,c)?

FastText

SGNS

Given a tuple (t,c) = target, context

- (cat, sat)
- (cat, aardvark)

Return probability that c is a real context word:

$$P(+|t,c) = \frac{1}{1+e^{-t\cdot c}}$$

$$P(-|t,c) = 1 - P(+|t,c)$$

= $\frac{e^{-t \cdot c}}{1 + e^{-t \cdot c}}$

Learning the classifier

• Iterative process

- We'll start with 0 or random weights
- Then adjust the word weights to
 - make the positive pairs more likely
 - and the negative pairs less likely
- over the entire training set:

$$\sum_{(t,c)\in +} \log P(+|t,c) + \sum_{(t,c)\in -} \log P(-|t,c)$$

• Train using gradient descent

BERT

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

Jacob Devlin Ming-Wei Chang Kenton Lee Kristina Toutanova Google AI Language {jacobdevlin,mingweichang,kentonl,kristout}@google.com

https://ai.googleblog.com/2018/11/open-sourcing-bert-state-of-art-pre.html

Use cases for feedforward networks

- Word representations
- Text classification
- Language modeling

State of the art systems use more powerful neural architectures (we will learn transformers architectures on Monday), but simple models are useful to consider!

Neural LMs

Image: (Bengio et al, 03)

Neural LMs

	n	C	h	m	direct	mix	train.	valid.	test.
MLP1	5		50	60	yes	no	182	284	268
MLP2	5		50	60	yes	yes		275	257
MLP3	5		0	60	yes	no	201	327	310
MLP4	5		0	60	yes	yes		286	272
MLP5	5		50	30	yes	no	209	296	279
MLP6	5		50	30	yes	yes		273	259
MLP7	3		50	30	yes	no	210	309	293
MLP8	3		50	30	yes	yes		284	270
MLP9	5		100	30	no	no	175	280	276
MLP10	5		100	30	no	yes		265	252
Kneser-Ney back-off								334	323
Kneser-Ney back-off								332	321
Kneser-Ney back-off								332	321
							1		

(Bengio et al, 03)

Recurrent LMs

Recurrent LMs

Sequence-to-Sequence Models

Ilya Sutskever, Oriol Vinyals, Quoc V. Le. 2014. Sequence to Sequence Learning with Neural Networks. Proc. NIPS

Sequence-to-Sequence Models for Neural Machine Translation

Yulia Tsvetkov

Undergrad NLP 2022

Sequence-to-Sequence Models for NMT

Encoder: Bidirectional RNN

Matrix Sentence Encoding

 $\mathbf{f}_i = [\overleftarrow{\mathbf{h}}_i; \overrightarrow{\mathbf{h}}_i]$ $\mathbf{\tilde{h}}_1$ $\overline{\mathbf{h}}_3$ $\overline{\mathbf{h}}_4$ $\overline{\mathbf{h}}_2$ $\overrightarrow{\mathbf{h}}_3$ $\overrightarrow{\mathbf{h}}_4$ $\overrightarrow{\mathbf{h}}_1$ $\vec{\mathbf{h}}_2$ \mathbf{X}_1 \mathbf{x}_2 \mathbf{X}_3 \mathbf{X}_4 möchte ein **Bier** Ich

 $\mathbf{F} \in \mathbb{R}^{2n imes |\boldsymbol{f}|}$

Ich möchte ein Bier

matrix-encoded sentence

Decoder: RNN + Attention

Ich möchte ein Bier

Ich möchte ein Bier

Ich möchte ein Bier