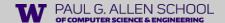


Natural Language Processing

Sequence labeling

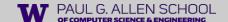
Yulia Tsvetkov

yuliats@cs.washington.edu



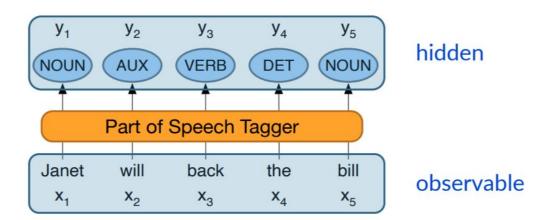
Announcements

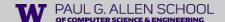
HW 1 grades will be released on Friday



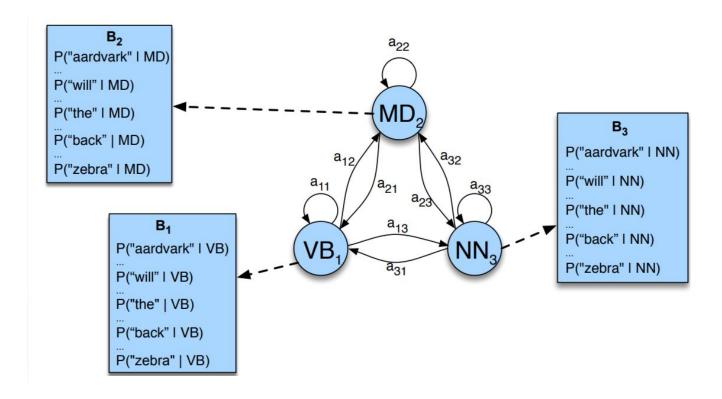
Hidden Markov Models

- We use a Markov chain for computing P for a sequence of observable events
- In many cases the events we are interested in are hidden
 - o e.g., we don't observe POS tags in a text

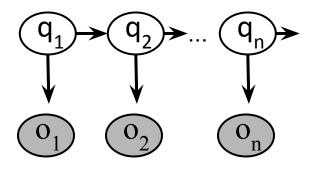


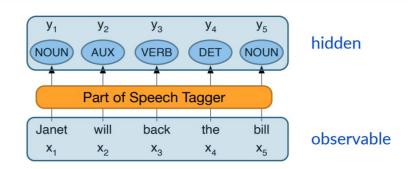


Hidden Markov Models



Hidden Markov Models



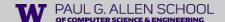


Markov Assumption: $P(q_i|q_1...q_{i-1}) = P(q_i|q_{i-1})$

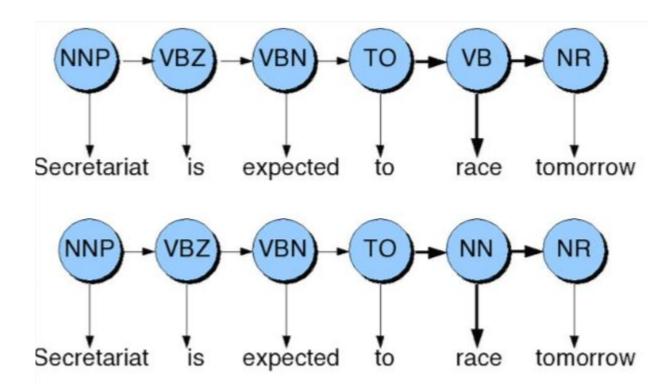
Output Independence: $P(o_i|q_1...q_i,...,q_T,o_1,...,o_i,...,o_T) = P(o_i|q_i)$

Hidden Markov Models (HMMs)

$Q=q_1q_2\ldots q_N$	a set of N states
$A = a_{11} \dots a_{ij} \dots a_{NN}$	a transition probability matrix A, each a_{ij} representing the probability
	of moving from state <i>i</i> to state <i>j</i> , s.t. $\sum_{j=1}^{N} a_{ij} = 1 \forall i$
$O = o_1 o_2 \dots o_T$	a sequence of T observations, each one drawn from a vocabulary $V =$
	$v_1, v_2,, v_V$
$B = b_i(o_t)$	a sequence of observation likelihoods , also called emission probabilities , each expressing the probability of an observation o_t being generated from a state q_i
$\pi=\pi_1,\pi_2,,\pi_N$	an initial probability distribution over states. π_i is the probability that the Markov chain will start in state <i>i</i> . Some states <i>j</i> may have $\pi_j = 0$, meaning that they cannot be initial states. Also, $\sum_{i=1}^{n} \pi_i = 1$



POS tagging with HMMs



HMM parameters

	$Q=q_1q_2\ldots q_N$	a set of N states
\longrightarrow	$A = a_{11} \dots a_{ij} \dots a_{NN}$	a transition probability matrix A , each a_{ij} representing the probability
		of moving from state <i>i</i> to state <i>j</i> , s.t. $\sum_{j=1}^{N} a_{ij} = 1 \forall i$
	$O = o_1 o_2 \dots o_T$	a sequence of T observations, each one drawn from a vocabulary $V =$
		$v_1, v_2,, v_V$
→	$B = b_i(o_t)$	a sequence of observation likelihoods , also called emission probabilities , each expressing the probability of an observation o_t being generated from a state q_i
→	$\pi=\pi_1,\pi_2,,\pi_N$	an initial probability distribution over states. π_i is the probability that the Markov chain will start in state <i>i</i> . Some states <i>j</i> may have $\pi_j = 0$, meaning that they cannot be initial states. Also, $\sum_{i=1}^{n} \pi_i = 1$

HMMs: algorithms

Forward

Viterbi

Forward-backward: Baum-Welch

Problem 1 (Likelihood):

Problem 2 (Decoding):

Problem 3 (Learning):

Given an HMM $\lambda = (A, B)$ and an observation se-

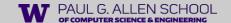
quence O, determine the likelihood $P(O|\lambda)$.

Given an observation sequence O and an HMM $\lambda =$

(A, B), discover the best hidden state sequence Q.

Given an observation sequence O and the set of states

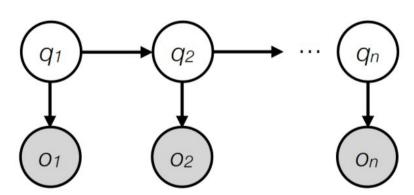
in the HMM, learn the HMM parameters A and B.



Forward	Problem 1 (Likelihood):	Given an HMM $\lambda = (A,B)$ and an observation se-
		quence O , determine the likelihood $P(O \lambda)$.
Viterbi	Problem 2 (Decoding):	Given an observation sequence O and an HMM $\lambda =$
		(A,B), discover the best hidden state sequence Q .
The state of the s	Problem 3 (Learning):	Given an observation sequence O and the set of states
Baum-Welch		in the HMM, learn the HMM parameters A and B.

Decoding: Given as input an HMM $\lambda = (A, B)$ and sequence of observations $O = o_1, o_2, ..., o_n$, find the most probable sequence of states $Q = q_1, q_2, ..., q_n$

$$\hat{t}_1^n = \operatorname*{argmax} P(t_1^n \mid w_1^n)$$



Decoding: Given as input an HMM $\lambda = (A, B)$ and sequence of observations $O = o_1, o_2, ..., o_n$, find the most probable sequence of states $Q = q_1, q_2, ..., q_n$

$$\hat{t}_{1}^{n} = \underset{t_{1}^{n}}{\operatorname{argmax}} P(t_{1}^{n} \mid w_{1}^{n})$$

$$= \underset{t_{1}^{n}}{\operatorname{argmax}} \frac{P(w_{1}^{n} \mid t_{1}^{n}) P(t_{1}^{n})}{P(w_{1}^{n})}$$

Decoding: Given as input an HMM $\lambda = (A, B)$ and sequence of observations $O = o_1, o_2, ..., o_n$, find the most probable sequence of states $Q = q_1, q_2, ..., q_n$

$$\hat{t}_{1}^{n} = \underset{t_{1}^{n}}{\operatorname{argmax}} P(t_{1}^{n} \mid w_{1}^{n}) \\
= \underset{t_{1}^{n}}{\operatorname{argmax}} \frac{P(w_{1}^{n} \mid t_{1}^{n}) P(t_{1}^{n})}{P(w_{1}^{n})} \\
= \underset{t_{1}^{n}}{\operatorname{argmax}} P(w_{1}^{n} \mid t_{1}^{n}) P(t_{1}^{n})$$

Decoding: Given as input an HMM $\lambda = (A, B)$ and sequence of observations $O = o_1, o_2, ..., o_n$, find the most probable sequence of states $Q = q_1, q_2, ..., q_n$

$$\hat{t}_{1}^{n} = \underset{t_{1}^{n}}{\operatorname{argmax}} P(t_{1}^{n} \mid w_{1}^{n})$$

$$= \underset{t_{1}^{n}}{\operatorname{argmax}} \frac{P(w_{1}^{n} \mid t_{1}^{n}) P(t_{1}^{n})}{P(w_{1}^{n})}$$

$$= \underset{t_{1}^{n}}{\operatorname{argmax}} P(w_{1}^{n} \mid t_{1}^{n}) P(t_{1}^{n})$$

simplifying assumptions:

Decoding: Given as input an HMM $\lambda = (A, B)$ and sequence of observations $O = o_1, o_2, ..., o_n$, find the most probable sequence of states $Q = q_1, q_2, ..., q_n$

$$\hat{t}_{1}^{n} = \underset{t_{1}^{n}}{\operatorname{argmax}} P(t_{1}^{n} \mid w_{1}^{n})$$

$$= \underset{t_{1}^{n}}{\operatorname{argmax}} \frac{P(w_{1}^{n} \mid t_{1}^{n}) P(t_{1}^{n})}{P(w_{1}^{n})}$$

$$= \underset{t_{1}^{n}}{\operatorname{argmax}} P(w_{1}^{n} \mid t_{1}^{n}) P(t_{1}^{n})$$

 q_1 q_2 \cdots q_n q_n q_n q_n q_n q_n q_n q_n

simplifying assumptions:

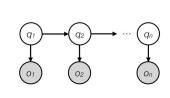
$$P(w_1^n \mid t_1^n) \approx \prod_{i=1}^n P(w_i \mid t_i)$$

Decoding: Given as input an HMM $\lambda = (A, B)$ and sequence of observations $O = o_1, o_2, ..., o_n$, find the most probable sequence of states $Q = q_1, q_2, ..., q_n$

$$\hat{t}_{1}^{n} = \underset{t_{1}^{n}}{\operatorname{argmax}} P(t_{1}^{n} \mid w_{1}^{n})$$

$$= \underset{t_{1}^{n}}{\operatorname{argmax}} \frac{P(w_{1}^{n} \mid t_{1}^{n}) P(t_{1}^{n})}{P(w_{1}^{n})}$$

 $=\mathop{\mathsf{argmax}}_{t_1^n} P(w_1^n \mid t_1^n) P(t_1^n)$



simplifying assumptions:

$$P(w_1^n \mid t_1^n) \approx \prod_{i=1}^n P(w_i \mid t_i)$$

$$P(t_1^n) pprox \prod_{i=1}^n P(t_i \mid t_{i-1})$$

Decoding: Given as input an HMM $\lambda = (A, B)$ and sequence of observations $O = o_1, o_2, ..., o_n$, find the most probable sequence of states $Q = q_1, q_2, ..., q_n$

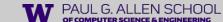
$$\hat{t}_1^n = \operatorname{argmax} P(t_1^n \mid w_1^n) pprox \operatorname{argmax} \prod_{i=1}^n \frac{\operatorname{emission}, B \operatorname{transition}, A}{P(w_i \mid t_i) P(t_i \mid t_{i-1})}$$

Decoding: Given as input an HMM $\lambda = (A, B)$ and sequence of observations $O = o_1, o_2, ..., o_n$, find the most probable sequence of states $Q = q_1, q_2, ..., q_n$

$$\hat{t}_1^n = \operatorname{argmax} P(t_1^n \mid w_1^n) \approx \operatorname{argmax} \prod_{i=1}^n \frac{\text{emission, } B \text{ transition, } A}{P(w_i \mid t_i)} P(t_i \mid t_{i-1})$$

How many possible choices?

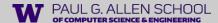
18 Undergrad NLP 2022

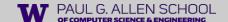


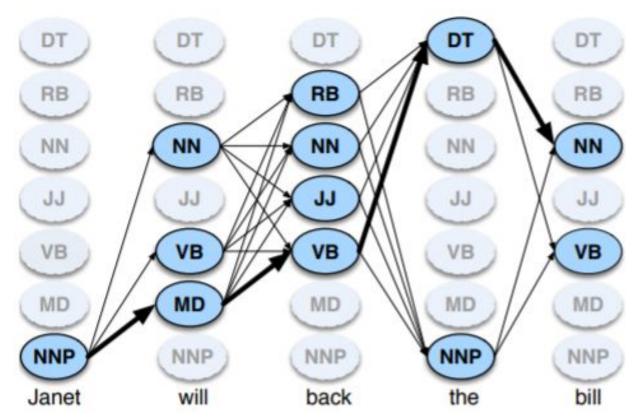
Part of speech tagging example

	1	suspect	the	present	forecast	is	pessimistic	
noun	•	•	•	•	•	•		
adj.		•		•	•		•	
adv.				•				
verb		•		•	•	•		
num.	•							
det.			•					
punc.								•

With this very simple tag set, $7^8 = 5.7$ million labelings. (Even restricting to the possibilities above, 288 labelings.)

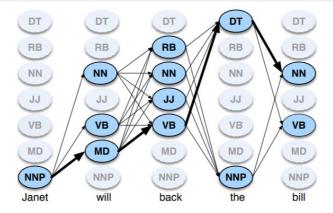






 $v_{t-1}(i)$ the **previous Viterbi path probability** from the previous time step the **transition probability** from previous state q_i to current state q_j

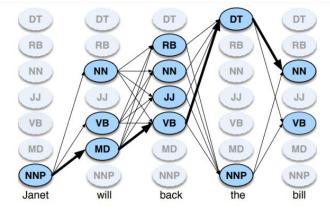
 $b_j(o_t)$ the **state observation likelihood** of the observation symbol o_t given the current state j



$$v_t(j) = \max_{i=1}^{N} v_{t-1}(i) a_{ij} b_j(o_t)$$

 $v_{t-1}(i)$ the **previous Viterbi path probability** from the previous time step the **transition probability** from previous state q_i to current state q_i

 $b_j(o_t)$ the **state observation likelihood** of the observation symbol o_t given the current state j



$$v_t(j) = \max_{i=1}^{N} v_{t-1}(i) a_{ij} b_j(o_t)$$

previous

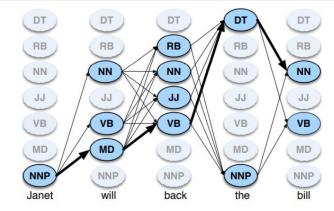
Viterbi path

probability

the previous Viterbi path probability from the previous time step $v_{t-1}(i)$ a_{ii}

the **transition probability** from previous state q_i to current state q_i

 $b_j(o_t)$ the **state observation likelihood** of the observation symbol o_t given the current state j



transition probability

$$v_t(j) = \max_{i=1}^{N} v_{t-1}(i) a_{ij} b_j(o_t)$$

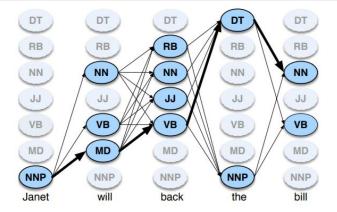
previous Viterbi path probability

 a_{ii}

 $v_{t-1}(i)$ the **previous Viterbi path probability** from the previous time step

the **transition probability** from previous state q_i to current state q_j

 $b_j(o_t)$ the **state observation likelihood** of the observation symbol o_t given the current state j



transition probability

$$v_t(j) = \max_{i=1}^{N} v_{t-1}(i) a_{ij} b_j(o_t)$$
 state observation likelihood previous Viterbi path probability

function VITERBI(*observations* of len *T*,*state-graph* of len *N*) **returns** *best-path*, *path-prob*

create a path probability matrix *viterbi*[N,T]

for each state s from 1 to N do

$$viterbi[s,1] \leftarrow \pi_s * b_s(o_1)$$

 $backpointer[s,1] \leftarrow 0$

for each time step t **from** 2 **to** T **do**

for each state s from 1 to N do

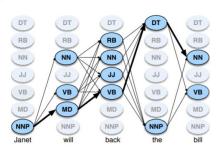
$$viterbi[s,t] \leftarrow \max_{s'=1}^{N} viterbi[s',t-1] * a_{s',s} * b_{s}(o_{t})$$

$$backpointer[s,t] \leftarrow \underset{s}{\operatorname{argmax}} viterbi[s',t-1] * a_{s',s} * b_s(o_t)$$

$$bestpathprob \leftarrow \max_{s=1}^{N} viterbi[s, T]$$

$$bestpathpointer \leftarrow \underset{s=1}{\operatorname{argmax}} viterbi[s, T]$$

 $bestpath \leftarrow$ the path starting at state bestpathpointer, that follows backpointer[] to states back in time **return** bestpath, bestpathprob



function VITERBI(observations of len T, state-graph of len N) **returns** best-path, path-prob

create a path probability matrix *viterbi[N,T]*

for each state s from 1 to N do

$$viterbi[s,1] \leftarrow \pi_s * b_s(o_1)$$

 $backpointer[s,1] \leftarrow 0$

for each time step t from 2 to T do

for each state s from 1 to N do

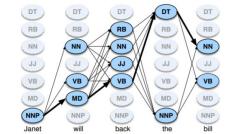
$$viterbi[s,t] \leftarrow \max_{s'=1}^{N} viterbi[s',t-1] * a_{s',s} * b_{s}(o_{t})$$

$$backpointer[s,t] \leftarrow \underset{s'=1}{\operatorname{argmax}} viterbi[s',t-1] * a_{s',s} * b_s(o_t)$$

$$bestpathprob \leftarrow \max_{s=1}^{N} viterbi[s, T]$$

$$bestpathpointer \leftarrow \underset{s=1}{\operatorname{argmax}} viterbi[s, T]$$

 $bestpath \leftarrow$ the path starting at state bestpathpointer, that follows backpointer[] to states back in time **return** bestpath, bestpathprob



function VITERBI(*observations* of len *T*,*state-graph* of len *N*) **returns** *best-path*, *path-prob*

create a path probability matrix *viterbi[N,T]*

for each state s from 1 to N do

$$viterbi[s,1] \leftarrow \pi_s * b_s(o_1)$$

 $backpointer[s,1] \leftarrow 0$

for each time step t from 2 to T do

for each state s from 1 to N do

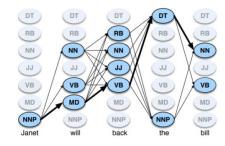
$$viterbi[s,t] \leftarrow \max_{s'=1}^{N} viterbi[s',t-1] * a_{s',s} * b_s(o_t)$$

$$backpointer[s,t] \leftarrow \underset{t}{\operatorname{argmax}} viterbi[s',t-1] * a_{s',s} * b_s(o_t)$$

$$bestpathprob \leftarrow \max_{s=1}^{N} viterbi[s, T]$$

$$bestpathpointer \leftarrow \operatorname{argmax}^{N} viterbi[s, T]$$

 $bestpath \leftarrow$ the path starting at state bestpathpointer, that follows backpointer[] to states back in time **return** bestpath, bestpathprob



initialization

recursion

function VITERBI(*observations* of len *T*,*state-graph* of len *N*) **returns** *best-path*, *path-prob*

create a path probability matrix *viterbi*[N,T]

for each state s from 1 to N do

$$viterbi[s,1] \leftarrow \pi_s * b_s(o_1)$$

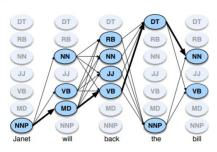
 $backpointer[s,1] \leftarrow 0$

for each time step t from 2 to T do

for each state s from 1 to N do

initialization

recursion



$$viterbi[s,t] \leftarrow \max_{s'=1}^{N} viterbi[s',t-1] * a_{s',s} * b_{s}(o_{t}) \leftarrow v_{t}(j) = \max_{i=1}^{N} v_{t-1}(i)a_{ij}b_{j}(o_{t})$$

$$backpointer[s,t] \leftarrow \underset{s'-1}{\operatorname{argmax}} viterbi[s',t-1] * a_{s',s} * b_s(o_t)$$

$$bestpathprob \leftarrow \max_{s=1}^{N} viterbi[s, T]$$

$$bestpathpointer \leftarrow \underset{s=1}{\operatorname{argmax}} viterbi[s, T]$$

 $bestpath \leftarrow$ the path starting at state bestpathpointer, that follows backpointer[] to states back in time **return** bestpath, bestpathprob

function VITERBI(observations of len T, state-graph of len N) **returns** best-path, path-prob

create a path probability matrix viterbi[N,T]

for each state s from 1 to N do

$$viterbi[s,1] \leftarrow \pi_s * b_s(o_1)$$

backpointer[s,1] $\leftarrow 0$

for each time step t from 2 to T do

for each state s from 1 to N do

recursion $viterbi[s,t] \leftarrow \max_{s'=1}^{N} viterbi[s',t-1] * a_{s',s} * b_{s}(o_{t}) \leftarrow v_{t}(j) = \max_{i=1}^{N} v_{t-1}(i)a_{ij}b_{j}(o_{t})$ $backpointer[s,t] \leftarrow \underset{i}{\text{argmax}} viterbi[s',t-1] * a_{s',s} * b_{s}(o_{t})$

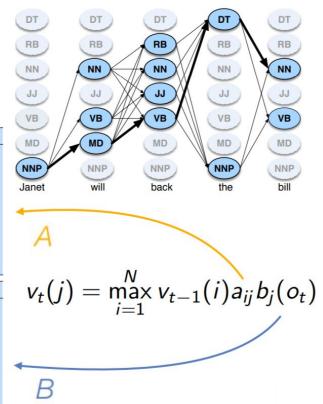
$$bestpathprob \leftarrow \max_{s=1}^{N} viterbi[s, T]$$

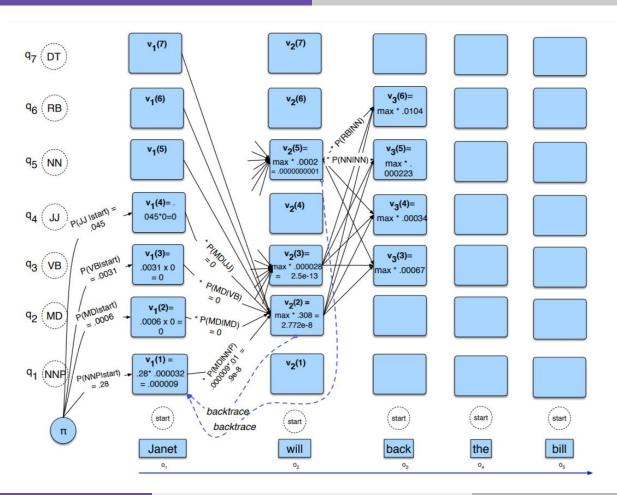
 $bestpathpointer \leftarrow \underset{s=1}{\operatorname{argmax}} viterbi[s, T]$

 $bestpath \leftarrow$ the path starting at state bestpathpointer, that follows backpointer[] to states back in time **return** bestpath, bestpathprob

	NNP	MD	VB	JJ	NN	RB	DT
< <i>s</i> >	0.2767	0.0006	0.0031	0.0453	0.0449	0.0510	0.2026
NNP	0.3777	0.0110	0.0009	0.0084	0.0584	0.0090	0.0025
MD	0.0008	0.0002	0.7968	0.0005	0.0008	0.1698	0.0041
VB	0.0322	0.0005	0.0050	0.0837	0.0615	0.0514	0.2231
JJ	0.0366	0.0004	0.0001	0.0733	0.4509	0.0036	0.0036
NN	0.0096	0.0176	0.0014	0.0086	0.1216	0.0177	0.0068
RB	0.0068	0.0102	0.1011	0.1012	0.0120	0.0728	0.0479
DT	0.1147	0.0021	0.0002	0.2157	0.4744	0.0102	0.0017

	Janet	will	back	the	bill
NNP	0.000032	0	0	0.000048	0
MD	0	0.308431	0	0	0
VB	0	0.000028	0.000672	0	0.000028
JJ	0	0	0.000340	0	0
NN	0	0.000200	0.000223	0	0.002337
RB	0	0	0.010446	0	0
DT	0	0	0	0.506099	0





function VITERBI(*observations* of len *T,state-graph* of len *N*) **returns** *best-path*, *path-prob*

```
create a path probability matrix viterbi[N,T]
```

for each state s from 1 to N do

$$viterbi[s,1] \leftarrow \pi_s * b_s(o_1)$$

 $backpointer[s,1] \leftarrow 0$

for each time step t from 2 to T do

Computational complexity in N and T?

for each state s from 1 to N do

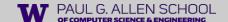
$$viterbi[s,t] \leftarrow \max_{s'=1}^{N} viterbi[s',t-1] * a_{s',s} * b_s(o_t)$$

$$backpointer[s,t] \leftarrow \underset{t}{\operatorname{argmax}} viterbi[s',t-1] * a_{s',s} * b_s(o_t)$$

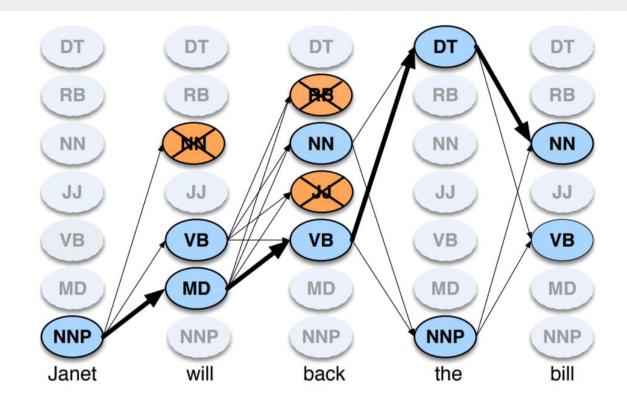
$$bestpathprob \leftarrow \max_{s=1}^{N} viterbi[s, T]$$

$$bestpathpointer \leftarrow \underset{s=1}{\operatorname{argmax}} viterbi[s, T]$$

 $bestpath \leftarrow$ the path starting at state bestpathpointer, that follows backpointer[] to states back in time **return** bestpath, bestpathprob

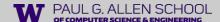


Beam search



HMMs: algorithms

Forward	Problem 1 (Likelihood):	Given an HMM $\lambda = (A, B)$ and an observation sequence O , determine the likelihood $P(O \lambda)$.
Viterbi	Problem 2 (Decoding):	Given an observation sequence O and an HMM $\lambda =$
		(A,B), discover the best hidden state sequence Q .
	Problem 3 (Learning):	Given an observation sequence O and the set of states
Baum-Welch		in the HMM, learn the HMM parameters A and B.



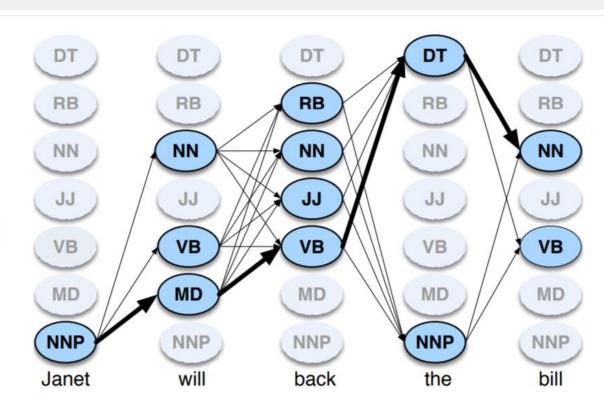
HMMs: algorithms

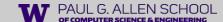
Forward	Problem 1 (Likelihood):	Given an HMM $\lambda = (A,B)$ and an observation se-
		quence O , determine the likelihood $P(O \lambda)$.
Viterbi	Problem 2 (Decoding):	Given an observation sequence O and an HMM $\lambda =$
		(A,B), discover the best hidden state sequence Q .
Forward-backward;	Problem 3 (Learning):	Given an observation sequence O and the set of states
Baum-Welch		in the HMM, learn the HMM parameters A and B.

The Forward algorithm

Just sum instead of max!

$$\alpha_t(j) = \sum_{i=1}^N \alpha_{t-1}(i) a_{ij} b_j(o_t)$$





Viterbi

- n-best decoding
- relationship to sequence alignment

Citation	Field
Viterbi (1967)	information theory
Vintsyuk (1968)	speech processing
Needleman and Wunsch (1970)	molecular biology
Sakoe and Chiba (1971)	speech processing
Sankoff (1972)	molecular biology
Reichert et al. (1973)	molecular biology
Wagner and Fischer (1974)	computer science