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Recap: Sequence Labeling
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Recap: Generative Models of Sequence Labeling

● Training: Maximum Likelihood Estimation (Count and Divide)

● Inference (decoding):

● Viterbi: 
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Limitations of HMMs

● Difficult to handle a word with an unseen tag or an unknown word
● HMMs don’t allow adding additional features.

○ e.g. Facebook is capitalized (should be a NN), friend is followed by will, might be a 
VB.

● HMMs perform poorly on more complex tasks like Named Entity Recognition 
(NER)
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I will friend him on Facebook.
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Named Entity Recognition

● Why might an HMM not do so well here?
○ Lots of O’s, so tags are not as informative [about the context].
○ Lots of unknown entities at test time – smoothing will not work.
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Today: Discriminative Models 
Goal: To tag a sequence

● Directly model p(y|x)
○ Simply using logistic regression, Maximum Entropy Markov Models (or MEMMs)

○ Conditional Random Fields (or CRFs).
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Generative vs Discriminative Models
● Generative Models specify a joint distribution over the labels and the data. e.g. 

HMMs

● Discriminative models compute the conditional distribution of the labels given 
the input. You want to discriminate between different labels. 
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● General form: 

Discriminative Model
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HMM

MEMM

…

● Zero-th order Markov assumption

● First order Markov assumption
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Maximum Entropy Markov Models
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A text classification problem 
(with more than 2 classes) 

multiclass logistic regression 

Normalization

Define a score function
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Scoring Function 
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Feature function 
(vector)

weights 
(vector)

Three Questions

1. How to define features?
2. How to learn the weights for features?
3. How to perform inference (decoding)?
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How to define features

● What is the current word, xi?
○ Number of features: size of vocabulary
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Example: I will run.

● What is the previous label y_{i-1}
○ Number of features: total number of tags

● What is the previous word x_{i-1} … ?
○ Number of features: size of vocabulary

xi=run

yi=VB yi-1=MD
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More interesting features
● Is the current word capitalized?

● Does the current (or previous) word end in -ly, -ed, … 

● Does the current word contain digits, or a period?
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I will absolutely friend you on Facebook.
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Features can also be learned
Using neural networks.

Basic Idea: encode the sequence of words into a sequence of vectors
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Features can also be learned
Using neural networks.

Basic Idea: encode the sequence of words into a sequence of vectors
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Features can also be learned
How to encode: Recurrent Neural Networks
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What is F:

● LSTM
● Transformers 
● … 

Token Feature at i-1 Input at iToken Feature at i
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Bi-RNN-CRF
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How to estimate the weights?

● Supervised Classification (text and labels are provided as training data)
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● Minimize cross entropy (aka Negative Log Likelihood) to find weights 
w and (also neural network parameters).
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How to decode? Viterbi again!
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Viterbi decoding with HMMs Viterbi decoding with MEMMs

HMM MEMM
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How to decode?
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Say I knew the value of y_{n-1}= u

This recurrence relation can be solved by dynamic programming. AKA Viterbi algorithm
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MEMMs - Summary

● Training – Cross Entropy Loss and Gradient Descent

● Decoding: Viterbi Algorithm
20
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Local Normalization

● MEMMs are locally normalized.
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Conditional distribution 
sums to one for each step i.
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Local Normalization to Global Normalization 
Conditional Random Fields 

● If we do global normalization, we get “conditional random fields” or CRFs.
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Old feature vector
Global Feature vector
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CRF - Undirected Graphical Model
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CRFs
● How to find the weights – training?

○ Same as MEMM, minimize cross entropy
○ We have the same set of weights we had with MEMM. How they are learned is 

different (and better).

● How to find tags at test time – decoding?
○ Viterbi
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Decoding with CRFs - Viterbi Algorithm

25

Independent of y
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Decoding with CRFs - Viterbi Algorithm
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Decoding with CRFs - Viterbi Algorithm
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This can be also solved with Viterbi!

Viterbi decoding with HMMs

Viterbi decoding with CRFs
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● Supervised Classification (text and labels are provided as training data)

Training CRF weights

The normalization complexity is huge — every possible sequence of labels of length 
n
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Really expensive!
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Can solve fast by dynamic programming!
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Forward Algorithm
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Both terms compute a product of some values 
dependent of yi, yi-1, and x

The max is replaced with sum
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Dynamic Programming: Forward Algorithm
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Viterbi decoding with HMMs

Forward algorithm in CRFs
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To summarize:
CRFs:

Features:

● Hand engineered or based on neural networks.

Training: 

● Cross Entropy Loss (and Gradient Descent) + Forward Algorithm

Decoding

● Viterbi Algorithm
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Readings
● Log Linear Models, MEMMs and CRFS (Michael Collins): crf.pdf (columbia.edu)

● BiLSTM-CRFs for sequence labeling: [1508.01991] Bidirectional LSTM-CRF Models for Sequence Tagging 
(arxiv.org)

● Natural Language Processing, Jacob Eisenstein (7.5.3): eisenstein-nov18.pdf (ucsd.edu)
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http://www.cs.columbia.edu/~mcollins/crf.pdf
https://arxiv.org/abs/1508.01991
https://arxiv.org/abs/1508.01991
https://cseweb.ucsd.edu/~nnakashole/teaching/eisenstein-nov18.pdf

