

Natural Language Processing

Syntactic parsing

Yulia Tsvetkov

yuliats@cs.washington.edu

1

Yulia Tsvetkov

Announcements

Ambiguity

• I saw a girl with a telescope

Copyright © Ron Leishman * http://ToonClips.com/3005

Syntactic Parsing

INPUT:

The move followed a round of similar increases by other lenders, Ο reflecting a continuing decline in that market

A Supervised ML Problem

- Data for parsing experiments:
 - Penn WSJ Treebank = 50,000 sentences with associated trees
 - Usual set-up: 40,000 training, 2,400 test

Canadian Utilities had 1988 revenue of \$ 1.16 billion , mainly from its natural gas and

electric utility businesses in Alberta , where the company serves about 800,000 customers[from Michael Collins slides]

Syntax

• The study of the patterns of formation of sentences and phrases from words

0	my dog	Pron N
0	the dog	Det N
0	the cat	Det N
0	and	Conj
0	the large cat	Det Adj N
0	the black cat	Det Adj N
0	ate a sausage	V Det N
	Yulia Tsvetkov	

Parsing

- The process of predicting syntactic representations
- Different types of syntactic representations are possible, for example:

Constituent (a.k.a. phrase-structure) tree

Constituent trees

- Internal nodes correspond to phrases
 - \circ **S** a sentence
 - NP Noun Phrase: My dog, a sandwich, lakes,...
 - **VP** Verb Phrase: ate a sausage, barked, ...
 - **PP** Prepositional phrases: with a friend, in a car, ...

- Nodes immediately above words are PoS tags (aka preterminals)
 - PN pronoun
 - \circ **D** determiner
 - \circ V verb
 - <mark>N</mark> noun
 - P preposition

Bracketing notation

• It is often convenient to represent a tree as a bracketed sequence

Parsing

- The process of predicting syntactic representations
- Different types of syntactic representations are possible, for example:

Dependency trees

- Nodes are words (along with part-of-speech tags)
- Directed arcs encode syntactic dependencies between them
- Labels are types of relations between the words
 - poss possessive
 - dobj direct object
 - nsub subject
 - det determiner

Recovering shallow semantics

- Some semantic information can be (approximately) derived from syntactic information
 - Subjects (nsubj) are (often) agents ("initiator / doers for an action")
 - Direct objects (dobj) are (often) patients ("affected entities")

Recovering shallow semantics

- Some semantic information can be (approximately) derived from syntactic information
 - Subjects (nsubj) are (often) agents ("initiator / doers for an action")
 - Direct objects (dobj) are (often) patients ("affected entities")
- But even for agents and patients consider:
 - Mary is baking a cake in the oven
 - A cake is baking in the oven
- In general it is not trivial even for the most shallow forms of semantics
 - E.g., consider prepositions: *in* can encode direction, position, temporal information, …
 Yulia Tsvetkov
 14
 Undergrad NLP 2022

Constituent and dependency representations

• Constituent trees can (potentially) be converted to dependency trees

• Dependency trees can (potentially) be converted to constituent trees

Yulia Tsvetkov

Constituent trees

- Internal nodes correspond to phrases
 - S a sentence
 - NP (Noun Phrase): My dog, a sandwich, lakes,..
 - VP (Verb Phrase): ate a sausage, barked, ...
 - PP (Prepositional phrases): with a friend, in a car,
- Nodes immediately above words are PoS tags (aka preterminals)
 - PN pronoun
 - D determiner
 - \circ V verb
 - N noun
 - P preposition Yulia Tsvetkov

Constituency Tests

- How do we know what nodes go in the tree?
- Classic constituency tests:
 - Replacement
 - Movement
 - Passive
 - Clefting
 - Preposing
 - Substitution by *proform*
 - Modification
 - Coordination/Conjunction
 - Ellipsis/Deletion

Morphology/Syntax/Semantics

- Syntax: The study of the patterns of formation of sentences and phrases from word
 - Borders with semantics and morphology sometimes blurred

Afyonkarahisarlılaştırabildiklerimizdenmişsinizcesinee

in Turkish means "as if you are one of the people that we thought to be originating from Afyonkarahisar" [wikipedia]

English grammar

Product Details (from Amazon) Hardcover: 1779 pages Publisher: Longman; 2nd Revised edition Language: English ISBN-10: 0582517346 ISBN-13: 978-0582517349 Product Dimensions: 8.4 x 2.4 x 10 inches Shipping Weight: 4.6 pounds

Context Free Grammar (CFG)

Context Free Grammar (CFG)

Grammar (CFG)

 $\begin{array}{l} \mathsf{ROOT} \rightarrow \mathsf{S} \\ \mathsf{S} \rightarrow \mathsf{NP} \ \mathsf{VP} \\ \mathsf{NP} \rightarrow \mathsf{DT} \ \mathsf{NN} \\ \mathsf{NP} \rightarrow \mathsf{NN} \ \mathsf{NNS} \\ \mathsf{NP} \rightarrow \mathsf{NP} \ \mathsf{PP} \\ \mathsf{VP} \rightarrow \mathsf{VBP} \ \mathsf{NP} \\ \mathsf{VP} \rightarrow \mathsf{VBP} \ \mathsf{NP} \\ \mathsf{PP} \rightarrow \mathsf{IN} \ \mathsf{NP} \end{array}$

Lexicon

 $NN \rightarrow interest$ $NNS \rightarrow raises$ $VBP \rightarrow interest$ $VBZ \rightarrow raises$

. . .

Other grammar formalisms: LFG, HPSG, TAG, CCG...

$S \rightarrow NP \ VP$	$N \to girl$
'	$ N \to telescope $
$VP \rightarrow V$	$N \rightarrow sandwich$
$VP \rightarrow V NP$	$PN \rightarrow I$
$VP \rightarrow VP PP$	$V \rightarrow saw$
$NP \rightarrow NP PP$	$V \rightarrow ate$
$NP \rightarrow D N$	$P \rightarrow with$
$NP \rightarrow PN$	$P \rightarrow in$
	$D \to a$
$PP \rightarrow P \ NP$	$D \rightarrow the$

 \mathbf{S}

 $N \to girl$ $S \rightarrow NP VP$ $N \rightarrow telescope$ $VP \rightarrow V$ $N \rightarrow sandwich$ $VP \rightarrow V NP$ $PN \rightarrow I$ $VP \rightarrow VP PP$ $V \rightarrow saw$ $V \rightarrow ate$ $NP \rightarrow NP PP$ $NP \rightarrow D N$ $P \rightarrow with$ $NP \rightarrow PN$ $P \rightarrow in$ $D \to a$ $PP \rightarrow P NP$ $D \rightarrow the$

$S \rightarrow ND VD$	$N \rightarrow ciml$
$S \rightarrow N\Gamma V\Gamma$	$IN \rightarrow girri$
	$N \rightarrow telescope$
$VP \rightarrow V$	$N \rightarrow sandwich$
$VP \rightarrow V NP$	
$VP \rightarrow VP PP$	$PN \rightarrow I$
	$V \rightarrow saw$
$NP \rightarrow NP \ PP$	$V \rightarrow ate$
$NP \rightarrow D N$	$P \rightarrow with$
$NP \rightarrow PN$	P ightarrow in
	$D \rightarrow a$
$PP \rightarrow P \ NP$	$D \rightarrow the$

 $N \to girl$ $S \rightarrow NP VP$ $N \rightarrow telescope$ $VP \to V \qquad N \to sandwich$ $VP \to V \quad NF \qquad PN \to I$ $PN \rightarrow I$ $VP \rightarrow VP PP$ $V \rightarrow saw$ $V \rightarrow ate$ $NP \rightarrow NP PP$ $NP \rightarrow D N$ $P \rightarrow with$ $NP \rightarrow PN$ $P \rightarrow in$ $D \to a$ $PP \rightarrow P NP$ $D \rightarrow the$

 $N \to girl$ $S \rightarrow NP VP$ $N \rightarrow telescope$ $VP \rightarrow V$ $N \rightarrow sandwich$ $VP \rightarrow V NP$ $PN \to I$ $VP \rightarrow VP PP$ $V \rightarrow saw$ 1 $V \rightarrow ate$ $NP \rightarrow NP PP$ $NP \rightarrow D N$ $P \rightarrow with$ $NP \rightarrow PN$ $P \rightarrow in$ $D \rightarrow a$ $PP \rightarrow P NP$ $D \rightarrow the$

 $N \rightarrow girl$ $S \rightarrow NP VP$ $N \rightarrow telescope$ $VP \rightarrow V$ $N \rightarrow sandwich$ $VP \rightarrow V NP$ $PN \to I$ $VP \rightarrow VP PP$ $V \rightarrow saw$ $V \rightarrow ate$ $NP \rightarrow NP PP$ $NP \rightarrow D N$ $P \rightarrow with$ $NP \rightarrow PN$ $P \rightarrow in$ $D \rightarrow a$ $PP \rightarrow P NP$ $D \rightarrow the$

 \mathbf{S}

saw

ŴΡ

ŇΡ

ΝŶ

|PN

 $N \rightarrow girl$ $S \rightarrow NP VP$ $N \rightarrow telescope$ $VP \rightarrow V$ $N \rightarrow sandwich$ $VP \rightarrow V NP$ $PN \rightarrow I$ $VP \rightarrow VP PP$ $V \rightarrow saw$ $V \rightarrow ate$ $NP \rightarrow NP PP$ ļ. $NP \rightarrow D N$ $P \rightarrow with$ $\overline{NP} \rightarrow \overline{PN}$ $P \rightarrow in$ $D \to a$ $PP \rightarrow P NP$ $D \rightarrow the$

$S \rightarrow NP \ VP$	$N \to girl$
	$N \rightarrow telescope$
$VP \rightarrow V$	$N \rightarrow sandwich$
$VP \rightarrow V NP$	$PN \rightarrow I$
$VP \rightarrow VP PP$	$V \rightarrow saw$
$NP \rightarrow NP PP$	$V \rightarrow ate$
$NP \rightarrow D N$	$P \rightarrow with$
$NP \rightarrow PN$	$P \rightarrow in$
	$D \rightarrow a$
$PP \rightarrow P \ NP$	$D \rightarrow the$

Treebank Sentences

```
( (S (NP-SBJ The move)
     (VP followed
         (NP (NP a round)
             (PP of
                 (NP (NP similar increases)
                     (PP by
                          (NP other lenders))
                      (PP against
                          (NP Arizona real estate loans)))))
         (S-ADV (NP-SBJ *)
                (VP reflecting
                     (NP (NP a continuing decline)
                         (PP-LOC in
                                 (NP that market))))))
     .))
```

Context-Free Grammars

- A context-free grammar is a 4-tuple <N, T, S, R>
 - N : the set of non-terminals
 - **Phrasal categories**: S, NP, VP, ADJP, etc.
 - **Parts-of-speech** (pre-terminals): NN, JJ, DT, VB
 - T: the set of terminals (the words)
 - S : the start symbol
 - Often written as ROOT or TOP
 - Not usually the sentence non-terminal S
 - R : the set of rules
 - Of the form $X \to Y_1 Y_2 \dots Y_k$, with X, $Y_i \in N$
 - Examples: $S \rightarrow NP VP$, $VP \rightarrow VP CC VP$
 - Also called rewrites, productions, or local trees

An example grammar

 $N = \{S, VP, NP, PP, N, V, PN, P\}$ $T = \{girl, telescope, sandwich, I, saw, ate, with, in, a, the\}$

$S = \{S\}$		
R :	Called Inner rules	
$S \rightarrow NP \ VP$	(NP A girl) (VP ate a sandwich)	
$VP \rightarrow V$		
$VP \rightarrow V NP$	(V ate) (NP a sandwich)	
$VP \rightarrow VP PP$	(VP saw a girl) (PP with a telescope)	
$NP \rightarrow NP PP$	(NP a girl) (PP with a sandwich)	
$NP \rightarrow D N$	(D a) (N sandwich)	
$NP \rightarrow PN$		

 $PP \rightarrow P NP$ (P with) (NP with a sandwich) Yulia Tsvetkov 32

Why context-free?

Why context-free?

Ambiguities

Coordination ambiguity

• Here, the coarse VP and NP categories cannot enforce subject-verb agreement in number resulting in the coordination ambiguity

36

This tree would be ruled out if the context would be somehow captured (subject-verb agreement)

Why parsing is hard? Ambiguity

• Prepositional phrase attachment ambiguity

PP Ambiguity

Put the block in the box on the table in the kitchen

3 prepositional phrases, 5 interpretations:

- Put the block ((in the box on the table) in the kitchen)
- Put the block (in the box (on the table in the kitchen))
- Put ((the block in the box) on the table) in the kitchen.
- Put (the block (in the box on the table)) in the kitchen.
- \circ Put (the block in the box) (on the table in the kitchen)

PP Ambiguity

Put the block in the box on the table in the kitchen

3 prepositional phrases, 5 interpretations:

- Put the block ((in the box on the table) in the kitchen)
- Put the block (in the box (on the table in the kitchen))

0 ...

A general case:

 \circ ((())) ()(()) ()()() (())() (()())

$$Cat_n = \binom{2n}{n} - \binom{2n}{n-1} \sim \frac{4^n}{n^{3/2}\sqrt{\pi}}$$

Catalan numbers

 $1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, \ldots$

A typical tree from a standard dataset (Penn treebank WSJ)

Canadian Utilities had 1988 revenue of \$ 1.16 billion , mainly from its natural gas and electric utility businesses in Alberta , where the company serves about 800,000 customers .

[from Michael Collins slides]

Syntactic Ambiguities I

- Prepositional phrases:
 - They cooked the beans in the pot on the stove with handles.
- Particle vs. preposition:
 - The puppy tore up the staircase.
- Complement structures
 - The tourists objected to the guide that they couldn't hear. She knows you like the back of her hand.
- Gerund vs. participial adjective
 - Visiting relatives can be boring. Changing schedules frequently confused passengers.

Syntactic Ambiguities II

- Modifier scope within NPs
 - impractical design requirements plastic cup holder
- Multiple gap constructions
 - The chicken is ready to eat.
 The contractors are rich enough to sue.
- Coordination scope:
 - Small rats and mice can squeeze into holes or cracks in the wall.

How to Deal with Ambiguity?

• We want to score all the derivations to encode how plausible they are

Put the block in the box on the table in the kitchen

Probabilistic Context Free Grammar (PCFG)

Probabilistic Context-Free Grammars

- A context-free grammar is a 4-tuple <N, T, S, R>
 - N : the set of non-terminals
 - Phrasal categories: S, NP, VP, ADJP, etc.
 - Parts-of-speech (pre-terminals): NN, JJ, DT, VB
 - T : the set of terminals (the words)
 - S : the start symbol
 - Often written as ROOT or TOP
 - Not usually the sentence non-terminal S
 - R : the set of rules
 - Of the form $X \rightarrow Y_1 Y_2 \dots Y_k$, with $X, Y_i \in N$
 - Examples: $S \rightarrow NP VP$, $VP \rightarrow VP CC VP$
 - Also called rewrites, productions, or local trees
- A PCFG adds:
 - A top-down production probability per rule $P(Y_1 Y_2 ... Y_k | X)$

Associate proba ∀ ∀2	Now we can score a tree as a product of probabilities corresponding to the used rules			
		$\alpha: X \to \alpha \in R$		
$S \rightarrow NP \ VP$	1.0	(NP A girl) (VP ate a sandwich)	$N \to girt$	0.2
			$N \rightarrow telescope$	0.7
$VP \rightarrow V$	0.2		$N \rightarrow sandwich$	0.1
$VP \rightarrow V NP$	0.4	(VP ate) (NP a sandwich)	$PN \rightarrow I$	1.0
$VP \rightarrow VP PP$	0.4	(VP saw a girl) (PP with …)	$V \rightarrow saw$	0.5
			$V \rightarrow ate$	0.5
$NP \rightarrow NP PP$	0.3	(NP a girl) (PP with)	$P \rightarrow with$	0.6
$NP \rightarrow D N$	0.5	(D a) (N sandwich)	$I \rightarrow wiin$	0.0
$NP \to PN$	0.2		$P \rightarrow in$	0.4
			$D \to a$	0.3
$PP \rightarrow P NP$ Yulia Tsvet	1.0 tkov	(P with) (NP with a sandwich) $_{46}$	Undergrad the 2022	0.7

PAUL G. ALLEN SCHOOL

PCFGs

 $N \rightarrow girl 0.2$ $N \rightarrow telescope 0.7$ $N \rightarrow sandwich 0.1$ $PN \rightarrow I$ 1.0 $V \rightarrow saw$ 0.5 $V \rightarrow ate^{0.5}$ $P \rightarrow with 0.6$ $P \rightarrow in$ 0.4 $D \rightarrow a 0.3$ $D \rightarrow the 0.7$

 $S \rightarrow NP VP 1.0$ $VP \rightarrow V$ 0.2 $VP \rightarrow V NP$ 0.4 $VP \rightarrow VP PP 0.4$ $NP \rightarrow NP PP 0.3$ $NP \rightarrow D N 0.5$ $NP \rightarrow PN$ 0.2 $PP \rightarrow P NP$ **1.0**

Yulia Tsvet

 \mathbf{S}

PAUL G. ALLEN SCHOOL OF COMPUTER SCIENCE & ENGINEERING

PCFGs

 $N \rightarrow girl 0.2$ $N \rightarrow telescope 0.7$ $V \rightarrow sandwich 0.1$ $PN \rightarrow I$ 1.0 $V \rightarrow saw$ 0.5 $V \rightarrow ate^{0.5}$ $P \rightarrow with 0.6$ $P \rightarrow in$ 0.4 $D \rightarrow a 0.3$ $D \rightarrow the 0.7$ I.

$$S \rightarrow NP \ VF \ 1.0$$

$$VP \rightarrow V \ 0.2$$

$$VP \rightarrow V \ NP \ 0.4$$

$$VP \rightarrow VP \ PP \ 0.4$$

$$NP \rightarrow NP \ PP \ 0.3$$

$$NP \rightarrow D \ N \ 0.5$$

$$NP \rightarrow PN \ 0.2$$

$$PP \rightarrow P \ NP \ 1.0$$

 $p(T) = 1.0 \times$

PAUL G. ALLEN SCHOOL OF COMPUTER SCIENCE & ENGINEERING

PCFGs

 $S \rightarrow NP VP 1.0$ $N \rightarrow girl 0.2$ $N \rightarrow telescope 0.7$ $VP \rightarrow V$ 0.2 $N \rightarrow sandwich \, 0.1$ $VP \rightarrow V NP 0.4$ $PN \rightarrow I$ 1.0 $VP \rightarrow VP PP 0.4$ $V \rightarrow saw$ 0.5 $V \rightarrow ate^{0.5}$ $NP \rightarrow NP PP 0.3$ $NP \rightarrow D N 0.5$ $P \rightarrow with 0.6$ $NP \rightarrow PN$ 0.2 I $P \rightarrow in$ 0.4 $D \rightarrow a 0.3$ $PP \rightarrow P NP$ **1.0** $D \rightarrow the 0.7$

 $p(T) = 1.0 \times 0.2 \times$

$$\begin{split} S \rightarrow NP \ VF \text{ 1.0} & N \rightarrow girl \text{ 0.2} \\ VP \rightarrow V \ 0.2 \\ VP \rightarrow V \ NP \ 0.4 \\ VP \rightarrow VP \ PP \ 0.4 \\ NP \rightarrow VP \ PP \ 0.4 \\ NP \rightarrow D \ N \ 0.5 \\ NP \rightarrow PN \ 0.2 \\ PP \rightarrow P \ NP \ 1.0 \\ \end{split}$$

 $p(T) = 1.0 \times 0.2 \times 1.0 \times$

PAUL G. ALLEN SCHOOL OF COMPUTER SCIENCE & ENGINEERING

PCFGs

$$S \rightarrow NP \ VP \ 1.0$$

$$VP \rightarrow V \ 0.2$$

$$VP \rightarrow V \ NP \ 0.4$$

$$VP \rightarrow VP \ PP \ 0.4$$

$$N \rightarrow telescope \ 0.7$$

$$N \rightarrow sandwich \ 0.1$$

$$PN \rightarrow I \ 1.0$$

$$V \rightarrow saw \ 0.5$$

$$NP \rightarrow D \ N \ 0.5$$

$$NP \rightarrow PN \ 0.2$$

$$PP \rightarrow P \ NP \ 1.0$$

$$P \rightarrow in \ 0.4$$

$$D \rightarrow a \ 0.3$$

$$D \rightarrow the \ 0.7$$

 $p(T) = 1.0 \times 0.2 \times 1.0 \times 0.4 \times$

$$\begin{split} S \rightarrow NP \ VF \ \textbf{1.0} & N \rightarrow girl \ \textbf{0.2} \\ VP \rightarrow V \ \textbf{0.2} \\ VP \rightarrow V \ NP \ \textbf{0.4} \\ VP \rightarrow VP \ PF \ \textbf{0.4} \\ NP \rightarrow VP \ PF \ \textbf{0.4} \\ NP \rightarrow D \ N \ \textbf{0.5} \\ NP \rightarrow PN \ \textbf{0.2} \\ PP \rightarrow P \ NP \ \textbf{1.0} \\ \end{split}$$

 $p(T) = 1.0 \times 0.2 \times 1.0 \times 0.4 \times 0.5 \times$

	$S \rightarrow NP \ VP \ 1.0$	N ightarrow girl 0.2
		$N \rightarrow telescope$ 0.7
	$VP \rightarrow V$ 0.2	$N \rightarrow sandwich \ 0.1$
\mathbf{S}	$VP \rightarrow V NP 0.4$ $VD \rightarrow VD DD 0.4$	PN ightarrow I 1.0
1.0	$V P \rightarrow V P P P P 0.4$	V ightarrow saw 0.5
$\frac{\text{NP}}{10.2} \qquad \qquad 0.4$	$NP \rightarrow NP PP 0.3$	$V \rightarrow ate {}^{0.5}$
$\frac{PN}{1.0 V} NP$	$NP \rightarrow D \ N \ 0.5$	$P \rightarrow with {\rm 0.6}$
I Saw NP PP	$NP \rightarrow PN$ 0.2	P ightarrow in 0.4
D		D o a 0.3
	$PP \rightarrow P NP 1.0$	$D \rightarrow the 0.7$
a		

 $p(T) = 1.0 \times 0.2 \times 1.0 \times 0.4 \times 0.5 \times 0.3 \times$

•

$$S \rightarrow NP \ VP \ 1.0$$

$$VP \rightarrow V \ 0.2$$

$$VP \rightarrow V \ NP \ 0.4$$

$$VP \rightarrow VP \ PP \ 0.4$$

$$VP \rightarrow VP \ PP \ 0.4$$

$$NP \rightarrow NP \ PP \ 0.3$$

$$NP \rightarrow D \ N \ 0.5$$

$$NP \rightarrow PN \ 0.2$$

$$PP \rightarrow P \ NP \ 1.0$$

$$P \rightarrow in \ 0.4$$

$$D \rightarrow a \ 0.3$$

$$D \rightarrow the \ 0.7$$

-5

 $\begin{array}{c} p(T) = 1.0 \times 0.2 \times 1.0 \times 0.4 \times 0.5 \times 0.3 \times \\ 0.5 \times 0.3 \times 0.2 \times 1.0 \times 0.6 \times 0.5 \times 0.3 \times 0.7 = 2.26 \times \\ \text{Yulia Tsvetkov} \end{array}$

PCFG Estimation

ML estimation

• A treebank: a collection sentences annotated with constituent trees

An estimated probability of a rule (maximum likelihood estimates)

$$p(X \to \alpha) = \frac{C(X \to \alpha)}{C(X)}$$

The number of times the rule used in the corpus

The number of times the nonterminal X appears in the treebank

- Smoothing is helpful
 - Especially important for preterminal rules

CKY Parsing

Parsing

- Parsing is search through the space of all possible parses
 - e.g., we may want either any parse, all parses or the highest scoring parse (if PCFG):

$\arg \max P(T)$

 $T \in G(x)$

Bottom-up:

- One starts from words and attempt to construct the full tree
- Top-down
 - Start from the start symbol and attempt to expand to get the sentence

CKY algorithm (aka CYK)

- Cocke-Kasami-Younger algorithm
 - Independently discovered in late 60s / early 70s
- An efficient bottom up parsing algorithm for (P)CFGs
 - can be used both for the recognition and parsing problems
 - Very important in NLP (and beyond)
- We will start with the non-probabilistic version

Constraints on the grammar

 The basic CKY algorithm supports only rules in the Chomsky Normal Form (CNF):

Constraints on the grammar

• The basic CKY algorithm supports only rules in the Chomsky Normal Form (CNF): $C \rightarrow x$

$$C \to C_1 C_2$$

- Any CFG can be converted to an equivalent CNF
 - Equivalent means that they define the same language
 - However (syntactic) trees will look differently
 - It is possible to address it by defining such transformations that allows for easy reverse transformation

Transformation to CNF form

- What one need to do to convert to CNF form
 - Get rid of rules that mix terminals and non-terminals
 - Get rid of unary rules:
 - Get rid of N-ary rules:

$$C \to C_1 \ C_2 \dots C_n \ (n > 2)$$

 $C \to C_1$

Crucial to process them, as required for efficient parsing

• How do we get a set of binary rules which are equivalent?

• How do we get a set of binary rules which are equivalent?

 $\begin{array}{ll} NP \rightarrow DT \ X \\ X \rightarrow NNP \ Y \\ Y \rightarrow VBG \ NN \end{array}$

• How do we get a set of binary rules which are equivalent?

```
NP \rightarrow DT \ X
```

 $X \rightarrow NNP \ Y$

 $Y \rightarrow VBG NN$

• A more systematic way to refer to new non-terminals

```
NP \rightarrow DT @NP|DT
```

```
@NP|DT \rightarrow NNP @NP|DT_NNP
```

```
@NP|DT_NNP \rightarrow VBG NN
```


• Instead of binarizing tuples we can binarize trees on preprocessing:

CKY: Parsing task

• We are given

Ο

• a grammar <N, T, S, R>

$$\boldsymbol{w} = (w_1, w_2, \dots, w_n)$$

• Our goal is to produce a parse tree for *w*

CKY: Parsing task

- We a given
 - a grammar <N, T, S, R>

$$\circ$$
 a sequence of words $oldsymbol{w} = (w_1, w_2, \dots, w_n)$

- Our goal is to produce a parse tree for w
- We need an easy way to refer to substrings of w

Parsing one word

 $C \to w_i$

Wi

Parsing one word

Wi

C

 $C \to w_i$

Parsing one word

$C \to w_i$

covers all words between *i* – 1 and *i*

Yulia Tsvetkov

Parsing longer spans

$C \rightarrow C_1 \ C_2$

Check through all C1, C2, mid

covers all words	covers all words
btw <i>min</i> and <i>mid</i>	btw <i>mid</i> and <i>max</i>

Parsing longer spans

$C \rightarrow C_1 \ C_2$

covers all words btw <i>min</i> and <i>mid</i>	covers all words btw <i>mid</i> and <i>max</i>

Check through all C1, C2, mid

Parsing longer spans

covers all words between *min* and *max*

PAUL G. ALLEN SCHOOL of computer science 5 engineering $S \rightarrow NP \ VP$

 $\begin{array}{c} \textbf{W} \quad \text{PAUL G. ALLEN SCHOOL} \\ \text{of computer science 5 engineering} \\ S \rightarrow NP \quad VP \end{array}$

 $\begin{array}{c} \textbf{W} \quad \text{PAUL G. ALLEN SCHOOL} \\ \text{of computer science 5 engineering} \\ S \rightarrow NP \quad VP \end{array}$

 $\begin{array}{c} \textbf{W} \quad \text{PAUL G. ALLEN SCHOOL} \\ \text{of computer science 5 engineering} \\ S \rightarrow NP \quad VP \end{array}$

 $\begin{array}{c} \label{eq:point} \textbf{W} \quad \text{PAUL G. ALLEN SCHOOL} \\ \text{of computer science s engineering} \\ S \rightarrow NP \quad VP \end{array}$

nner ules	$VP \to M \ V$ $VP \to V$				pison	can po	lead	0
	$NP \to N$ $NP \to N NP$	max = 3	max = 2	max = 1	C	L		Ū
	$egin{array}{c} N ightarrow can \ N ightarrow lead \ N ightarrow poison \end{array}$	S?			min = 0			
eterminal	$M ightarrow can \ M ightarrow must$				min = 1			
Pre	$V \rightarrow poison$ $V \rightarrow lead$				min = 2			

 $\begin{array}{c} \label{eq:point} \textbf{W} \quad \text{PAUL G. ALLEN SCHOOL} \\ \text{of computer science s engineering} \\ S \rightarrow NP \quad VP \end{array}$

$P \to M V$ $VP \to V$	$VP \rightarrow N$ VP -				poison 2 3	can	lead	(
$NP \to N$ $P \to N NP$	$NP - NP \rightarrow N$	max = 3	max = 2	max = 1				
N ightarrow can N ightarrow lead V ightarrow poison	$\left.\begin{array}{c} N \to \\ N \to \\ N \to \\ N \to po \end{array}\right.$	⁶ S?	4	1	min = 0			
$\begin{array}{cc} M \rightarrow can \\ M \rightarrow must \end{array}$	$\begin{bmatrix} & & & \\ & & M \\ & & M \\ & & M \\ & & M \\ \end{pmatrix}$	5	2		min = 1			
$V \rightarrow lead$	$ \begin{bmatrix} V \to pot\\ V \to - \end{bmatrix} $	3			min = 2			

 $\begin{array}{c} \label{eq:point} \textbf{W} \quad \text{PAUL G. ALLEN SCHOOL} \\ \text{of computer science s engineering} \\ S \rightarrow NP \quad VP \end{array}$

er	$VP \to M \ V$ $VP \to V$						poison	can	lead	
unl sli :						3	2	2	1	0
	$NP \rightarrow N$									
	$NP \rightarrow N NP$		max = 3	ax = 2	x = 1 m	r				
	$N \rightarrow can$]	6		4	1				
	$N \rightarrow lead$		S?			nin = 0	m			
	$N \rightarrow poison$									
lal			5		2					
mir	$M \to can$					nin = 1	mi			
ster	$M \rightarrow must$	-								
Pre			3							
	$V \rightarrow poison$					nin = 2	m			
	$V \rightarrow lead$									

Undergrad NLP 2022

 $\begin{array}{c} \label{eq:point} \textbf{W} \quad \text{PAUL G. ALLEN SCHOOL} \\ \text{of computer science s engineering} \\ S \rightarrow NP \quad VP \end{array}$

 can	poi	son					$VP \to M \ V$ $VP \to V$	Jer Per
1	2	3						
							$NP \to N$	
			max = 1	max = 2	max = 3	_	$NP \rightarrow N NP$	
			1]	$N \rightarrow can$	
		min = 0	2				$N \rightarrow lead$	
							$N \rightarrow poison$	
				2				nal
		m in = 1		6			$M \to can$	Щ.
							$M \rightarrow must$	s ter
					3			Pre
		min = 2			?		$V \rightarrow poison$	
					12]	$V \rightarrow lead$	
	can	can poi	$\begin{vmatrix} can & poison \\ 1 & 2 & 3 \end{vmatrix}$ $min = 0$ $min = 1$ $min = 2$	$\begin{vmatrix} can & poison \\ 1 & 2 & 3 \end{vmatrix}$ $max = 1$ $min = 0$ $min = 1$ $min = 2$	$\begin{vmatrix} can & poison \\ 1 & 2 & 3 \end{vmatrix}$ $max = 1 max = 2$ $min = 0 \qquad ?$ $min = 1 \qquad ?$ $min = 2$	$\begin{vmatrix} can & poison \\ 1 & 2 & 3 \end{vmatrix}$ $max = 1 max = 2 max = 3$ $min = 0 \qquad ? \qquad ?$ $min = 1 \qquad ? \qquad ?$ $min = 2 \qquad ? ?$ $?$	$\begin{vmatrix} can & poison \\ 1 & 2 & 3 \end{vmatrix}$ $max = 1 max = 2 max = 3$ $min = 0 1 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 &$	$\begin{vmatrix} can & poison \\ 1 & 2 & 3 \\ max = 1 & max = 2 & max = 3 \\ min = 0 & 2 & max = 3 \\ min = 1 & max = 3 \\ min = 1 & max = 3 \\ min = 1 & max = 3 \\ min =$

PAUL G. ALLEN SCHOOL of computer science 5 engineering $S \rightarrow NP \ VP$

PAUL G. ALLEN SCHOOL of computer science 5 engineering $S \rightarrow NP \ VP$

 $\begin{array}{c} \label{eq:point} \textbf{W} \quad \text{PAUL G. ALLEN SCHOOL} \\ \text{of computer science s engineering} \\ S \rightarrow NP \quad VP \end{array}$

aner seli	$VP \to M \ V$ $VP \to V$				poison	can	lead	
	$NP \rightarrow N$ $NP \rightarrow N NP$	max = 3	max = 2	max = 1	2 3	2	1	0
	$N \rightarrow can$ $N \rightarrow lead$ $N \rightarrow poison$		4 ?	$\begin{bmatrix} 1 & N, V \\ NP, VP \end{bmatrix}$	min = 0			
terminal	$M \to can$ $M \to must$		² N, M NP		m in = 1			
Pre	$V ightarrow poison \ V ightarrow lead$	³ N, V NP, VP			min = 2			

PAUL G. ALLEN SCHOOL of computer science 5 engineering $S \rightarrow NP \ VP$

PAUL G. ALLEN SCHOOL of computer science 5 engineering $S \rightarrow NP \ VP$

 $\begin{array}{c} \label{eq:point} \textbf{W} \quad \text{PAUL G. ALLEN SCHOOL} \\ \text{of computer science s engineering} \\ S \rightarrow NP \quad VP \end{array}$

	ead	can	poison	3				$VP \to M \ V$ $VP \to V$	nner ules
Ū	·		-	ŭ	max = 1	max = 2	max = 3	$NP \to N$ $NP \to N NP$	
			m	nin = 0	$\begin{bmatrix} 1 & N, V \\ NP, VP \end{bmatrix}$	⁴ NP		N ightarrow can N ightarrow lead N ightarrow poison	
			m	iin = 1		² _{N, M} _{NP}	⁵ ?	$M \to can$ $M \to must$	terminal
			m	ni n = 2			³ N, V NP, VP	$V ightarrow poison \ V ightarrow lead$	Pre

 $\begin{array}{c} \label{eq:point} \textbf{W} \quad \text{PAUL G. ALLEN SCHOOL} \\ \text{of computer science s engineering} \\ S \rightarrow NP \quad VP \end{array}$

lead can poison 0 1 2 3			$VP \to M V$ $VP \to V$	Inner
ma	ax = 1 max = 2	max = 3	$NP \to N$ $NP \to N NP$	
$\min = 0 \begin{bmatrix} 1 \\ N \end{bmatrix}$	$\left. \begin{array}{c} N,V\\P,VP \end{array} \right ^{4} NP$	6 ?	$\begin{vmatrix} N \to can \\ N \to lead \\ N \to poison \end{vmatrix}$	
min = 1	² _{N, M} _{NP}	5S, VP, NP	$M \to can$ $M \to must$	terminal
min = 2		³ N, V NP, VP	$V o poison \ V o lead$	Pret

 $\begin{array}{c} \label{eq:point} \textbf{W} \quad \text{PAUL G. ALLEN SCHOOL} \\ \text{of computer science s engineering} \\ S \rightarrow NP \quad VP \end{array}$

iner Jles	$\begin{array}{ccc} VP \rightarrow M & V \\ VP \rightarrow V \end{array}$			poison	can	lead	
<u> </u>	$NP \to N$ $NP \to N NP$	2 max = 3	max = 1 max = 2	2 3		1	С
	$\begin{array}{c} N \rightarrow can \\ N \rightarrow lead \\ N \rightarrow poison \end{array}$	6 ?	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	min = 0			
eterminal es	$M \to can$ $M \to must$	$\begin{bmatrix} 5\\S, \end{bmatrix} \begin{bmatrix} P\\VP \end{bmatrix}$	² N, M NP	min = 1			
Pre	$V ightarrow poison \ V ightarrow lead$	$\begin{array}{c} 3 & N \\ NP & VP \end{array}$		min = 2			

....

...

W PAUL G. ALLEN SCHOOL of computer science is engineering $S \to NP \ VP$

lead ca	an poison			$VP \to M V$ $VP \to V$	nner ules
		max = 1 max = 2	max = 3	$NP \to N$ $NP \to N NP$	
mid=1	min = 0	$\left \begin{array}{c}1 \\ N,V \\ NP,VP\end{array}\right ^{4} NP$	⁶ <i>S</i> , <i>NP</i>	$N ightarrow can \ N ightarrow lead \ N ightarrow poison$	
	min = 1	² N, M NP	${}^{5}S, VP,$ NP	$M ightarrow can \ M ightarrow must$	eterminal
	min = 2		³ N, V NP, VP	$V ightarrow poison \ V ightarrow lead$	Pre

W PAUL G. ALLEN SCHOOL of computer science is engineering $S \to NP \ VP$

lead c	an poison			$\begin{array}{ccc} VP \rightarrow M & V \\ VP \rightarrow V \end{array}$	ner les
0 1	2 3	max = 1 max = 2	max = 3	$NP \to N$ $NP \to N NP$	
mid=2	min = 0	$\begin{bmatrix} 1 & N, V \\ NP, VP \end{bmatrix}^{4} NP$	$egin{array}{c} {}^{6}S,NP\ S(?!) \end{array}$	$\begin{bmatrix} N \to can \\ N \to lead \\ N \to poison \end{bmatrix}$	
	min = 1	² N, M NP	5S, VP, NP	$\begin{array}{c} M \rightarrow can \\ M \rightarrow must \end{array}$	reterminal lles
	min = 2		NP,VP	$\begin{bmatrix} V \to poison \\ V \to lead \end{bmatrix}$	<u> </u>

overgenerates)

γμια ι svetkov

lead

0

Undergrad NLP 2022

Ambiguity

No subject-verb agreement, and *poison* used as an intransitive verb