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Announcements
●
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Ambiguity

● I saw a girl with a telescope
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Syntactic Parsing
● INPUT: 

○ The move followed a round of similar increases by other lenders, 
reflecting a continuing decline in that market

● OUTPUT:
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A Supervised ML Problem

Canadian Utilities had 1988 revenue of $ 1.16 billion , mainly from its natural gas and 

electric utility businesses in Alberta , where the company serves about 800,000 customers .

● Data for parsing experiments: 
○ Penn WSJ Treebank = 50,000 sentences with associated trees
○ Usual set-up: 40,000 training, 2,400 test 

[from Michael Collins slides]
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Syntax
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Syntax
● The study of the patterns of formation of sentences and phrases from words

○ my dog Pron N
○ the dog Det N
○ the cat Det N

○ and Conj

○ the large cat Det Adj N
○ the black cat Det Adj N

○ ate a sausage V Det N
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Parsing
● The process of predicting syntactic representations
● Different types of syntactic representations are possible, for example:

Constituent (a.k.a. phrase-structure) tree
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Constituent trees
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● Internal nodes correspond to phrases
○ S – a sentence
○ NP  – Noun Phrase:    My dog,  a sandwich,  lakes,..
○ VP  – Verb Phrase:   ate a sausage, barked, …
○ PP  – Prepositional phrases:  with a friend,  in a car, …

● Nodes immediately above words are PoS tags (aka preterminals)
○ PN – pronoun
○ D – determiner
○ V – verb
○ N – noun
○ P – preposition
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Bracketing notation
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● It is often convenient to represent a tree as a bracketed sequence
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Parsing
● The process of predicting syntactic representations
● Different types of syntactic representations are possible, for example:

11

Constituent (a.k.a. phrase-structure) tree Dependency tree
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Dependency trees

● Nodes are words (along with part-of-speech tags)
● Directed arcs encode syntactic dependencies 

between them
● Labels are types of relations between the words

○ poss – possessive
○ dobj – direct object
○ nsub - subject
○ det - determiner
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Recovering shallow semantics

13

● Some semantic information can be (approximately) derived from syntactic 
information
○ Subjects (nsubj) are (often) agents ("initiator / doers for an action")   
○ Direct objects (dobj) are  (often) patients ("affected entities")
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Recovering shallow semantics
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● Some semantic information can be (approximately) derived from syntactic 
information
○ Subjects (nsubj) are (often) agents ("initiator / doers for an action")   
○ Direct objects (dobj) are  (often) patients ("affected entities")

● But even for agents and patients consider:
○ Mary is baking a cake in the oven                                           
○ A cake is baking in the oven

● In general it is not trivial even for the most shallow forms of semantics
○ E.g., consider prepositions: in can encode direction, position, temporal information, …

root My 
PN

dog 
N

ate 
V

a 
D

sausage 
     N

root

poss nsubj

dobj
det
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Constituent and dependency representations
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● Constituent trees can (potentially) be converted to dependency trees

● Dependency trees can (potentially) be converted to constituent trees 
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Constituent trees

16

● Internal nodes correspond to phrases
○ S – a sentence
○ NP (Noun Phrase):    My dog,  a sandwich,  

lakes,..
○ VP (Verb Phrase):   ate a sausage, barked, …
○ PP (Prepositional phrases):  with a friend,  in a car, 

…
● Nodes immediately above words are PoS tags (aka preterminals)

○ PN – pronoun
○ D – determiner
○ V – verb
○ N – noun
○ P – preposition
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Constituency Tests
● How do we know what nodes go in the tree?

● Classic constituency tests:
○ Replacement
○ Movement

■ Passive
■ Clefting
■ Preposing 

○ Substitution by proform
○ Modification
○ Coordination/Conjunction
○ Ellipsis/Deletion
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Morphology/Syntax/Semantics
● Syntax: The study of the patterns of formation of sentences and phrases from 

word
○ Borders with semantics and morphology sometimes blurred

Afyonkarahisarlılaştırabildiklerimizdenmişsinizcesinee 

in Turkish means "as if you are one of the people that we thought to be originating 
from Afyonkarahisar" [wikipedia]
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English grammar
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Context Free Grammar (CFG)
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Context Free Grammar (CFG)

Other grammar formalisms: LFG, HPSG, TAG, CCG…
 

Grammar (CFG) Lexicon

ROOT → S
S → NP VP
NP → DT NN
NP → NN NNS

NN → interest
NNS → raises
VBP → interest
VBZ → raises
…NP → NP PP

VP → VBP NP
VP → VBP NP PP
PP → IN NP
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CFGs
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CFGs
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CFGs
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CFGs
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CFGs
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CFGs
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CFGs

28



Undergrad NLP 2022Yulia Tsvetkov

CFGs

29



Undergrad NLP 2022Yulia Tsvetkov

Treebank Sentences
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Context-Free Grammars
● A context-free grammar is a 4-tuple <N, T, S, R>

○ N : the set of non-terminals
■ Phrasal categories: S, NP, VP, ADJP, etc.
■ Parts-of-speech (pre-terminals): NN, JJ, DT, VB

○ T : the set of terminals (the words)
○ S : the start symbol

■ Often written as ROOT or TOP
■ Not usually the sentence non-terminal S

○ R : the set of rules
■ Of the form X → Y1 Y2 … Yk, with X, Yi ∈ N
■ Examples: S → NP VP,   VP → VP CC VP
■ Also called rewrites, productions, or local trees
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An example grammar

(NP  A girl)  (VP ate a sandwich)  

(V  ate)  (NP a sandwich)  
(VP  saw a girl)  (PP with a telescope)  

(NP  a girl)  (PP with a sandwich)  

(P  with)  (NP with a sandwich)  

  (D a) (N sandwich)

Preterminal rules

Called Inner rules
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Why context-free?
What can be a sub-tree is only affected by what the 
phrase type is (VP) but not the context
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Why context-free?
What can be a sub-tree is only affected by what the 
phrase type is (VP) but not the context

Not grammatical
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Ambiguities
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Coordination ambiguity
● Here, the coarse VP and NP categories cannot enforce subject-verb agreement 

in number resulting in the coordination ambiguity

This tree would be ruled out if the context 
would be somehow captured (subject-verb 
agreement)

"Bark" can refer both  to a noun or a 
verb

Coordination
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Why parsing is hard?   Ambiguity
● Prepositional phrase attachment ambiguity
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PP Ambiguity
Put the block in the box on the table in the kitchen

 
3 prepositional phrases, 5 interpretations:

○ Put the block ((in the box on the table) in the kitchen) 

○ Put the block (in the box (on the table in the kitchen)) 

○ Put ((the block in the box) on the table) in the kitchen. 

○ Put (the block (in the box on the table)) in the kitchen. 

○ Put  (the block in the box) (on the table in the kitchen)
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PP Ambiguity
Put the block in the box on the table in the kitchen

3 prepositional phrases, 5 interpretations:
○ Put the block ((in the box on the table) in the kitchen) 

○ Put the block (in the box (on the table in the kitchen)) 

○ …

A general case:
○ ((())) ()(()) ()()() (())() (()())

Catalan numbers
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A typical tree from a standard dataset (Penn treebank WSJ)

Canadian Utilities had 1988 revenue of $ 1.16 billion , mainly from its natural gas and 

electric utility businesses in Alberta , where the company serves about 800,000 customers .

[from Michael Collins slides]
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Syntactic Ambiguities I

● Prepositional phrases:
○ They cooked the beans in the pot on the stove with handles. 

● Particle vs. preposition:
○ The puppy tore up the staircase. 

● Complement structures
○ The tourists objected to the guide that they couldn’t hear.

She knows you like the back of her hand. 

● Gerund vs. participial adjective
○ Visiting relatives can be boring.

Changing schedules frequently confused passengers. 
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Syntactic Ambiguities II

● Modifier scope within NPs
○ impractical design requirements

plastic cup holder 

● Multiple gap constructions
○ The chicken is ready to eat.

The contractors are rich enough to sue. 

● Coordination scope:
○ Small rats and mice can squeeze into holes or cracks in the wall. 
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How to Deal with Ambiguity?
● We want to score all the derivations to encode how plausible they are

 Put the block in the box on the table in the kitchen
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Probabilistic Context Free Grammar (PCFG)
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Probabilistic Context-Free Grammars
● A context-free grammar is a 4-tuple <N, T, S, R>

○ N : the set of non-terminals
■ Phrasal categories: S, NP, VP, ADJP, etc.
■ Parts-of-speech (pre-terminals): NN, JJ, DT, VB

○ T : the set of terminals (the words)
○ S : the start symbol

■ Often written as ROOT or TOP
■ Not usually the sentence non-terminal S

○ R : the set of rules
■ Of the form X → Y1 Y2 … Yk, with X, Yi ∈ N
■ Examples: S → NP VP,   VP → VP CC VP
■ Also called rewrites, productions, or local trees

● A PCFG adds:
○ A top-down production probability per rule P(Y1 Y2 … Yk | X)
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PCFGs

(NP  A girl)  (VP ate a sandwich)  

(VP  ate)  (NP a sandwich)  
(VP  saw a girl)  (PP with …)  

(NP  a girl)  (PP with ….)  

(P  with)  (NP with a sandwich)  

  (D a) (N sandwich)

1.0

   

    

Associate probabilities with the rules :           
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Now we can score a tree as a 
product of probabilities 
corresponding to the used rules
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PCFGs

1.0

0.2

1.0

0.4

0.5

0.2

0.3

0.5 1.0

0.6 0.50.3

0.3 0.7

47

1.0

0.2
0.4
0.4

0.3
0.5
0.2

1.0

0.2

0.7

0.1

1.0

0.5

0.5

0.6

0.4

0.3

0.7



Undergrad NLP 2022Yulia Tsvetkov

PCFGs
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PCFGs
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PCFGs
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PCFGs
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PCFGs
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PCFGs
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PCFGs
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PCFG Estimation
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ML estimation
● A treebank: a collection sentences annotated with constituent trees

● An estimated probability of a rule (maximum likelihood estimates)

● Smoothing is helpful
○ Especially important for preterminal rules

The number of times the rule used in the 
corpus

The number of times the nonterminal X 
appears in the treebank 
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CKY Parsing
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Parsing
● Parsing is search through the space of all possible parses

○ e.g., we may want either any parse, all parses or the highest scoring parse (if PCFG):

● Bottom-up:
○ One starts from words and attempt to construct the full tree

● Top-down
○ Start from the start symbol and attempt to expand to get the sentence

arg max P (T )
T ∈G(x)
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CKY algorithm (aka CYK)
● Cocke-Kasami-Younger algorithm

○ Independently discovered in late 60s / early 70s

● An efficient bottom up parsing algorithm for (P)CFGs 
○ can be used both for the recognition and parsing problems
○ Very important in NLP (and beyond)

● We will start with the non-probabilistic version
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Constraints on the grammar
● The basic CKY algorithm supports only rules in the Chomsky Normal Form 

(CNF):

Unary preterminal rules (generation of words given PoS 
tags)

Binary inner rules
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Constraints on the grammar
● The basic CKY algorithm supports only rules in the Chomsky Normal Form 

(CNF):

● Any CFG can be converted to an equivalent CNF
○ Equivalent means that they define the same language
○ However (syntactic) trees will look differently
○ It is possible to address it by defining such transformations that allows for easy reverse 

transformation
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Transformation to CNF form
● What one need to do to convert to CNF form

○ Get rid of rules that mix terminals and non-terminals 
○ Get rid of unary rules:   
○ Get rid of N-ary rules: 

Crucial to process them, as 
required for efficient parsing
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Transformation to CNF form: binarization
● Consider 

● How do we get a set of binary rules which are equivalent?
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Transformation to CNF form: binarization
● Consider 

● How do we get a set of binary rules which are equivalent?
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Transformation to CNF form: binarization
● Consider 

● How do we get a set of binary rules which are equivalent?

● A more systematic way to refer to new non-terminals
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Transformation to CNF form: binarization
● Instead of binarizing tuples we can binarize trees on preprocessing:

Can be easily reversed 
on postprocessing 

Also known as lossless 
Markovization in the 
context of PCFGs
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CKY: Parsing task
● We are given 

○ a grammar <N, T, S, R>
○ a sequence of words

● Our goal is to produce a parse tree for w  

67
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CKY: Parsing task
● We a given 

○ a grammar <N, T, S, R>
○ a sequence of words

● Our goal is to produce a parse tree for w 
● We need an easy way to refer to substrings of w 

68

indices refer to fenceposts

span (i, j)  refers to words between fenceposts i and j 
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Parsing one word
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Parsing one word
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Parsing one word
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Parsing longer spans

Check through all
C1, C2, mid
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Parsing longer spans

Check through all
C1, C2, mid
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Parsing longer spans
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Apparently the sentence is ambiguous for the grammar:  (as the grammar 
overgenerates)
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Ambiguity

No subject-verb agreement, and 
poison used as an intransitive verb 
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