OF COMPUTER SCIENCE & ENGINEERING

Natural Language Processing

Syntactic parsing

Yulia Tsvetkov

yuliats@cs.washington.edu

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Yulia Tsvetkov 1 Undergrad NLP 2022

gConstituent (phrase-structure) representation

S
Plo Verb/\NP
y o T

A/\

Nom Noun

Noun flight through Pro

morning Denver

}& Dependency representation

Y

I prefer the morning flight through Denver

}& Dependency representation

root
(rool)

I prefer the morning flight through Denver

= A dependency structure can be defined as a directed graph G,

consisting of
= asetV of nodes — vertices, words, punctuation, morphemes
= asetAofarcs —directed edges,
= alinear precedence order < on V (word order).

b Labeled graphs
nodes in V are labeled with word forms (and annotation).
= arcsin A are labeled with dependency types
= L={l,....l i1} isthe set of permissible arc labels;
= EveryarcinAis atriple (i,j,k), representing a dependency from w: to w;with
label !x.

}& Dependency vs Constituency

= Dependency structures explicitly represent
= head-dependent relations (directed arcs),
= functional categories (arc labels)
= possibly some structural categories (parts of speech)

= Phrase (aka constituent) structures explicitly represent
= phrases (nonterminal nodes),
= structural categories (nonterminal labels)

g Dependency vs Constituency trees

S

prefer /\
/\ NP VP
1 ﬂl g ht ‘ /\
T T Pro Verb NP
the morning Denver ‘ ‘ /\
I prefer Det Nom
the Nom

through /\ /\

Nom Noun

Noun flight through Pro

morning Denver

g Parsing Languages with Flexible Word Order

| prefer the morning flight through Denver

LN NN

A npegnovnTato yTpeHHu nepenet Yyepes [leHBep

g Languages with free word order

| prefer the morning flight through Denver

LN NN

A npegnoynTato yTpeHHUU nepenet Yepes [leHsep
A npegnoynTato Yepes [leHBep YTpeHHUU nepeneT
YTpeHHUU nepeneT a npeanovunTaro Yyepes [leHBep
[lepeneT yTpeHHUN 9 npeanoyvntato Yepes [leHBep
Uepes [leHBep 4 npegnovntard YyTpeHHUU nepenet
A yepes [leHBep npeanoynTald YTPEHHUN NepeneT

Dependency relations

e Label
e Relation

* Modifier
* Dependent
* Child

* Governor
* Parent

E& Types of relationships

rOO
dObj
det nmod

I prefer the morning ﬂlght through Denver

= The clausal relations NSUBJ and DOBJ identify the arguments:
the subject and direct object of the predicate cancel

= The NMOD, DET, and CASE relations denote modifiers of the
nouns flights and Houston.

}Q Grammatical functions

Clausal Argument Relations Description

NSUBJ Nominal subject

DOBJ Direct object

10BJ Indirect object

CCOMP Clausal complement
XCOMP Open clausal complement
Nominal Modifier Relations Description

NMOD Nominal modifier

AMOD Adjectival modifier
NUMMOD Numeric modifier

APPOS Appositional modifier
DET Determiner

CASE Prepositions, postpositions and other case markers
Other Notable Relations Description

CONJ Conjunct

ce Coordinating conjunction

ATV R®] Selected dependency relations from the Universal Dependency set. (de Marn-
effe et al., 2014)

g Dependency Constraints

root
(roo)

I prefer the morning flight through Denver

= Syntactic structure is complete (connectedness)
= connectedness can be enforced by adding a special root node

= Syntactic structure is hierarchical (acyclicity)
= there is a unique pass from the root to each vertex

= Every word has at most one syntactic head (single-head

constraint)
= except root that does not have incoming arcs

This makes the dependencies a tree

E& Projectivity

= Projective parse
= arcs don’t cross each other
= mostly true for English
= Non-projective structures are needed to account for
» |ong-distance dependencies
= flexible word order

| root | { mod ',

\4

JetBlue canceled our flight this morning which was already late

E& Projectivity

= Dependency grammars do not normally assume that all
dependency-trees are projective, because some linguistic
phenomena can only be achieved using non-projective trees.

= But a lot of parsers assume that the output trees are
projective

= Reasons
= conversion from constituency to dependency
»= the most widely used families of parsing algorithms impose
projectivity

g Detecting Projectivity/Non-Projectivity

= The idea is to use the inorder traversal of the tree: <left-child,
root, right-child>
= This is well defined for binary trees. We need to extend it to n-ary
trees.

= |f we have a projective tree, the inorder traversal will give us
the original linear order.

}Q Non-Projective Statistics

Arabic: 11.2 %
Bulgarian: 5.4 %
Chinese: 0.0 %
Czech: 23.2 %
Danish: 15.6 %
Dutch: 36.4 %
German: 27.8 %
Japanese: 5.3 %
Polish: 18.9 %
Slovene: 22.2 %
Spanish 1.7 %
Swedish: 9.8 %
Turkish: 11.6 %
English: 0.0% (SD: 0.1%)

Percentage of non-projective trees for some treebanks of the CoNLL-X Shared Task and English.

g Dependency Treebanks

= the major English dependency treebanks converted from the
WSJ sections of the PTB (Marcus et al., 1993)

= OntoNotes project (Hovy et al. 2006, Weischedel et al. 2011)
adds conversational telephone speech, weblogs, usenet
newsgroups, broadcast, and talk shows in English, Chinese and
Arabic

= annotated dependency treebanks created for morphologically
rich languages such as Czech, Hindi and Finnish, eg Prague
Dependency Treebank (Bejcek et al., 2013)

= http://universaldependencies.org/
= 150 treebanks, 90 languages

http://universaldependencies.org/

EﬁConversion from constituency to dependency

= Xia and Palmer (2001)
= mark the head child of each node in a phrase structure, using the
appropriate head rules
= make the head of each non-head child depend on the head of the

head-child
S(dumped)
/\
NP(workers) VP(dumped)
il P
NNS(\Jorkers) VBD(dumped) NP(sacks) PP(into)
wor‘kers a’unlped NNS(’SaCkS) P/}P(bin)
sal‘ks in’to DT(a)ANN(bin)
C‘I bl"n

IOTNCHUINEY A lexicalized tree from Collins (1999).

g Parsing problem

The parsing problem for a dependency parser is to find the
optimal dependency tree y given an input sentence x

This amounts to assigning a syntactic head i
and a label I to every node j corresponding to a
word X, in such a way that the resulting graph
is a tree rooted at the node O

E{’; Parsing problem

= This is equivalent to finding a spanning tree in the complete
graph containing all possible arcs

root
Peter bought \
bought
root - Peter/\,
picture
d \

picture

}& Parsing algorithms

* Transition based
= greedy choice of local transitions guided by a good classifier
= deterministic
= MaltParser (Nivre et al. 2008)
= Graph based
= Minimum Spanning Tree for a sentence
= McDonald et al’s (2005) MSTParser
= Martins et al.s (2009) Turbo Parser

g Transition Based Parsing

= greedy discriminative dependency parser
= motivated by a stack-based approach called shift-reduce

parsing originally developed for analyzing programming
languages (Aho & Ullman, 1972).
= Nivre 2003

rOO
dObj
det nmod

I prefer the morning ﬂlght through Denver

Configuration

Input buffer
wi w2 wn

11 —

= ependency
B j' i Parser Relations

—

sn
—

IDTNVMRE] Basic transition-based parser. The parser examines the top two elements of the
stack and selects an action based on consulting an oracle that examines the current configura-
tion.

¥

Configuration

Stack: partially
processed words

Stack

s1

Input buffer Buffer: unprocessed words

wi w2

s2

sn

—

A

Parser

Oracle

N—

wn

Dependency
Relations

Oracle: a classifier

¥

Operations

Stack: partially
processed words

Stack

s1

Input buffer Buffer: unprocessed words

wi w2

s2

sn

—

A

Parser

Oracle

N—

wn

Dependency
Relations

Oracle: a classifier

At each step choose:
= Shift

¥

Operations

Stack: partially
processed words

<

Stack

s1

Input buffer Buffer: unprocessed words

wi w2 wn

~ Dependency |

s2

sn

—

A

Parser

Relations

Oracle: a classifier

N—

At each step choose:

» Shift
= Reduce left

g Operations

Input buffer Buffer: unprocessed words

wi w2 wn

. H s1
Stacke gt P =
Stack | - Oracle | |Oracle: a classifier
N—

At each step choose:

— = Shift
= |LeftArc or Reduce left
= RightArc or Reduce right

}& Shift-Reduce Parsing

Configuration:

= Stack, Buffer, Oracle, Set of dependency relations
Operations by a classifier at each step:

= Shift

= remove w1l from the buffer, add it to the top of the stack as s1
= LeftArc or Reduce left

= assert a head-dependent relation between s1 and s2

= remove s2 from the stack
= RightArc or Reduce right

= assert a head-dependent relation between s2 and sl

= remove sl from the stack

Shift-Reduce Parsing

Book me the morning flight

Step

Stack

Word List

Action

Relation Added

Shift-Reduce Parsing

I'O

o lOb_]
det
ob [

Y

Book me the morning ﬂlght

Step

Stack

Word List

Action

Relation Added

[root]

[book, me, the, morning, flight]

Shift-Reduce Parsing

I'O

o lOb_]
det
ob [

Y

Book me the morning ﬂlght

Step

Stack

Word List

Action

Relation Added

[root]

[book, me, the, morning, flight]

Shift-Reduce Parsing

erO I

Y

{iobj}

t

@
[
/

Book me the morning flight

Step

Stack

Word List

Action

Relation Added

[root]
[root, book]

[book, me, the, morning, flight]
[me, the, morning, flight]

SHIFT

Shift-Reduce Parsing

I'O

—

o lOb_]
det
ob [
\4

Book me the morning ﬂlght

Step Stack | Word List Action Relation Added
0 [root] | [book, me, the, morning, flight] SHIFT
1 [root, book] | [me, the, morning, flight] SHIFT

Shift-Reduce Parsing

II'OO I

- —

[iobj}

A

4

Uobj;

t

@
[
/

Book me the morning flight

Step Stack | Word List Action Relation Added
0 [root] | [book, me, the, morning, flight] SHIFT
1 [root, book] | [me, the, morning, flight] SHIFT
2 [root, book, me] | [the, morning, flight]

Shift-Reduce Parsing

II'OO I

- —

[iobj}

A

4

Uobj;

t

@
[
/

Book me the morning flight

Step Stack | Word List Action Relation Added
0 [root] | [book, me, the, morning, flight] SHIFT
1 [root, k] | [me, the, morning, flight] SHIFT
2 [root, boOk, me] | [the, morning, flight] RIGHTARC

Shift-Reduce Parsing

II'OO I

- —

[iobj}

A

4

Uobj;

t

@
[
/

Book me the morning flight

Step Stack | Word List Action Relation Added
0 [root] | [book, me, the, morning, flight] SHIFT
1 [root, k] | [me, the, morning, flight] SHIFT
2 [root, boOk, me] | [the, morning, flight] RIGHTARC (book — me)

Shift-Reduce Parsing

II'OO I

- —

[iobj}

A

4

Uobj;

t

@
[
/

Book me the morning flight

Step Stack | Word List Action Relation Added
0 [root] | [book, me, the, morning, flight] SHIFT
1 [root, book] | [me, the, morning, flight] SHIFT
2 [root, book, me] | [the, morning, flight] RIGHTARC (book — me)
3 [root, book] | [the, morning, flight]

Shift-Reduce Parsing

II'OO I

- —

[iobj}

A

4

Uobj;

t

@
[
/

Book me the morning flight

Step Stack | Word List Action Relation Added
0 [root] | [book, me, the, morning, flight] SHIFT
1 [root, book] | [me, the, morning, flight] SHIFT
2 [root, book, me] | [the, morning, flight] RIGHTARC (book — me)
3 [root, book] | [the, morning, flight] SHIFT

Shift-Reduce Parsing

II'OO I

- —

[iobj}

A

4

Uobj;

t

@
[
/

Book me the morning flight

Step Stack | Word List Action Relation Added
0 [root] | [book, me, the, morning, flight] SHIFT
1 [root, book] | [me, the, morning, flight] SHIFT
2 [root, book, me] | [the, morning, flight] RIGHTARC (book — me)
3 [root, book] | [the, morning, flight] SHIFT
4 [root, book, the] | [morning, flight]

Shift-Reduce Parsing

II'OO I

- —

[iobj}

A

4

Uobj;

t

@
[
/

Book me the morning flight

Step Stack | Word List Action Relation Added
0 [root] | [book, me, the, morning, flight] SHIFT
1 [root, book] | [me, the, morning, flight] SHIFT
2 [root, book, me] | [the, morning, flight] RIGHTARC (book — me)
3 [root, book] | [the, morning, flight] SHIFT
4 [root, book, the] | [morning, flight] SHIFT

g Shift-Reduce Parsing

—

I'O

o lOb_]
det
ob [
\4

Book me the morning ﬂlght

Step Stack | Word List Action Relation Added
0 [root] | [book, me, the, morning, flight] SHIFT
1 [root, book] | [me, the, morning, flight] SHIFT
2 [root, book, me] | [the, morning, flight] RIGHTARC (book — me)
3 [root, book] | [the, morning, flight] SHIFT
4 [root, book, the] | [morning, flight] SHIFT
5 [root, book, the, morning] | [flight]

g Shift-Reduce Parsing

—

I'O

o lOb_]
det
ob [
\4

Book me the morning ﬂlght

Step Stack | Word List Action Relation Added
0 [root] | [book, me, the, morning, flight] SHIFT
1 [root, book] | [me, the, morning, flight] SHIFT
2 [root, book, me] | [the, morning, flight] RIGHTARC (book — me)
3 [root, book] | [the, morning, flight] SHIFT
4 [root, book, the] | [morning, flight] SHIFT
5 [root, book, the, morning] | [flight] SHIFT

Shift-Reduce Parsing

I'O

—

o lOb_]
det
ob [
\4

Book me the morning ﬂlght

Step Stack | Word List Action Relation Added

0 [root] | [book, me, the, morning, flight] SHIFT

1 [root, book] | [me, the, morning, flight] SHIFT

2 [root, book, me] | [the, morning, flight] RIGHTARC (book — me)
3 [root, book] | [the, morning, flight] SHIFT

4 [root, book, the] | [morning, flight] SHIFT

5 [root, book, the, morning] | [flight] SHIFT

6 [root, book, the, morning, flight] | []

Shift-Reduce Parsing

I'O

—

o lOb_]
det
ob [
\4

Book me the morning ﬂlght

Step Stack | Word List Action Relation Added

0 [root] | [book, me, the, morning, flight] SHIFT

1 [root, book] | [me, the, morning, flight] SHIFT

2 [root, book, me] | [the, morning, flight] RIGHTARC (book — me)

3 [root, book] | [the, morning, flight] SHIFT

4 [root, book, the] | [morning, flight] SHIFT

5 [root, book, the, Ming] [flight] SHIFT

6 [root, book, the, morning, flight] | [] LEFTARC | (morning < flight)

Shift-Reduce Parsing

I'O

—

Y

o lOb_]
det
ob [

Book me the morning ﬂlght

Step Stack | Word List Action Relation Added

0 [root] | [book, me, the, morning, flight] SHIFT

| [root, book] | [me, the, morning, flight] SHIFT

2 [root, book, me] | [the, morning, flight] RIGHTARC (book — me)

3 [root, book] | [the, morning, flight] SHIFT

4 [root, book, the] | [morning, flight] SHIFT

5 [root, book, the, morning] | [flight] SHIFT

6 [root, book, the, momirﬂght} [] LEFTARC | (morning < flight)
) [root, book, the, fiYght] | [] LEFTARC (the < flight)

Shift-Reduce Parsing

(100))

t
(deg
| dobj

Book me the morning flight

Step Stack | Word List Action Relation Added
0 [root] | [book, me, the, morning, flight] SHIFT
| [root, book] | [me, the, morning, flight] SHIFT
2 [root, book, me] | [the, morning, flight] RIGHTARC (book — me)
3 [root, book] | [the, morning, flight] SHIFT
4 [root, book, the] | [morning, flight] SHIFT
5 [root, book, the, morning] | [flight] SHIFT
6 [root, book, the, morning, flight] | [] LEFTARC | (morning < flight)
7 [root, book, theflight] | [] LEFTARC (the < flight)
8 [root, book, flight] | [] RIGHTARC (book — flight)

Shift-Reduce Parsing

(100))

t
(det)
(dobj

Book me the morning flight

Step Stack | Word List Action Relation Added
0 [root] | [book, me, the, morning, flight] SHIFT
| [root, book] | [me, the, morning, flight] SHIFT
2 [root, book, me] | [the, morning, flight] RIGHTARC (book — me)
3 [root, book] | [the, morning, flight] SHIFT
4 [root, book, the] | [morning, flight] SHIFT
5 [root, book, the, morning] | [flight] SHIFT
6 [root, book, the, morning, flight] | [] LEFTARC | (morning < flight)
7 [root, book, the, flight] | [] LEFTARC (the < flight)
8 [root, bookeQight] | [] RIGHTARC (book — flight)
9 (root — book)

[root, book]

[]

RIGHTARC

Shift-Reduce Parsing

(100))

t
(det)
(dobj

Book me the morning flight

Step Stack | Word List Action Relation Added
0 [root] | [book, me, the, morning, flight] SHIFT
1 [root, book] | [me, the, morning, flight] SHIFT
2 [root, book, me] | [the, morning, flight] RIGHTARC (book — me)
3 [root, book] | [the, morning, flight] SHIFT
4 [root, book, the] | [morning, flight] SHIFT
5 [root, book, the, morning] | [flight] SHIFT
6 [root, book, the, morning, flight] | [] LEFTARC | (morning < flight)
7 [root, book, the, flight] | [] LEFTARC (the < flight)
8 [root, book, flight] | [] RIGHTARC (book — flight)
9 [root, book] | [] RIGHTARC (root — book)
10 [root] | [] Done

E& Shift-Reduce Parsing

Configuration:

= Stack, Buffer, Oracle, Set of dependency relations
Operations by a classifier at each step: Complexity?
= Shift

= remove w1l from the buffer, add it to the top of the stack as s1
= LeftArc or Reduce left

= assert a head-dependent relation between(Oracle decisions can
= remove s2 from the stack correspond to unlabeled
= RightArc or Reduce right o Bl ize Sl

= assert a head-dependent relation between s2 and sl
= remove sl from the stack

p 3 Training an Oracle

= Oracle is a supervised classifier that learns a function from the
configuration to the next operation
= How to extract the training set?

p 3 Training an Oracle

m ini ?
How to extract the training set-
= if LeftArc — LeftArc det
= if RightArC Book the flight through Houston

= if s1 dependents have been processed — RightArc
= else — Shift

¥

Training an Oracle

= How to extract the training set?

if LeftArc — LeftArc

det

. If nghtArC Book the flight through Houston
= if s1 dependents have been processed — RightArc

» else — Shift

Step Stack Word List Predicted Action
0 [root] [book, the, flight, through, houston] SHIFT
| [root, book] [the, flight, through, houston] SHIFT
2 [root, book, the] [flight, through, houston] SHIFT
3 [root, book, the, flight] [through, houston] LEFTARC
4 v o8 [root, book, flight] [through, houston] SHIFT
5 [root, book, flight, through] [houston] SHIFT
6 [root, book, flight, through, houston] [] LEFTARC
7 [root, book, flight, houston | [] RIGHTARC
8 [root, book, flight] [] RIGHTARC
(0] [root bookl 1 RIGHTARC

p 3 Training an Oracle

= Oracle is a supervised classifier that learns a function from the
configuration to the next operation
= How to extract the training set?
= jf LeftArc — LeftArc
= jf RightArc
= if s1 dependents have been processed — RightArc
= else — Shift

» What features to use?

g Features

= POS, word-forms, lemmas on the stack/buffer ~(s1.w =flights,op = shift)
= morphological features for some languages ($2:w = canceled,op = shift)
= previous relations (s1.t = NNS,o0p = shift)
= conjunction features (e.g. Zhang&Clark’08; (2.1 = VBD, op = shift)
Huang&Sagae’10; Zhang&Nivre’11) (b1.w = 10,0p = shift)
(by.t =TO,o0p = shift)
Source Feature templates <Sl -wt = flightsNNS, op = shift >
One word s;.w 1.1 s1.wi (s1.t os2.t = NNSVBD, op = shift)
S2.W $2.7 §2.Wwi
by.w by.w bo.wt
Two word s;.wosy.w S1.[05857.1 sy.toby.w
S1.[082.wt S1.WOos2.WOos2.f S1.WOS1.108).1

S1.wos1.[082.1 S1.wosy.t

g Learning

= Before 2014: SVMs,
= After 2014: Neural Nets

g Chen & Manning 2014

Stack Buffer
{ ROOT hasVBZ good JJ ! i control NN .1
/nsubj
He_PRP

binary, sparse [oToToT1Tolo[1]0]. Jolo[1]0
dim =106~ 107

: So.w = has A so.t = VBZ :
Indicator . s1.w = good A s1.t = JJ A by.w = control ;
features - lc(s2)t =PRPAsyt =VBZAs;t=J]

lc(sg).w = He A le(s2).l = nsubj A so.w = has Slides by Dangi Chen

g Chen & Manning 2014

Softmax probabilities

Output layer y cross-entropy error will be

y = softmax(Uh + b,) M back-propagated to the
embeddings.

Hidden layer h 92000000

h = ReLU(Wx + b)) m

Input layer x |()(1000 000)

lookup + concat f
Stack Buffer
t ROOT hasVBZ good JJ ; control NN
nsubj

He PRP

¥

Chen & Manning 2014

= Features

s1,s2,s3, bl, b2, b3
leftmost/rightmost
children of s1 and s2
leftmost/rightmost
grandchildren of

sl and s2

POS tags for the above
arc labels for
children/grandchildren

Stack Buffer
i ROOT hasVBZ good.JJ control NN
/nsubj
He PRP

S good J) @
S2 has VBZ %
b1 control NN @
lc(51) =—p @ + @ + @
rc(s) % % %
lc(s2) He PRP nsubj
rc(sz) o @ 2

g Evaluation of Dependency Parsers

#correct dependencies

#of dependencies

= LAS - labeled attachment score
= UAS - unlabeled attachment score

}% Chen & Manning 2014

Parser UAS LAS sent. /s
MaltParser 89.8 87.2 469
MSTParser 91.4 38.1 10

TurboParser 92.3* 89.6* 8

C& M 2014 92.0 89.7 654

Follow-up

Wethod |uAs__|LAS (PTBWs)5D 33

Chen & Manning 2014 92.0 89.7
Weiss et al. 2015 93.99 92.05
Andor et al. 2016 94.61 92.79

Stack LSTMs (Dyer et al. 2015)

Transition-Based Dependency Parsing with Stack Long Short-Term Memory

Chris Dyer** Miguel Ballesteros®® Wang Ling® Austin Matthews® Noah A. Smith*®
#Marianas Labs “NLP Group, Pompeu Fabra University *Carnegie Mellon University
chris@marianaslabs.com, miguel.ballesteros@upf.edu,

I]{nﬁl.r:nﬂ asmetrinma naemithlBAce Amin adn
N

@
SO
¢

(i) p (i)
Hﬁ *

T F s | T T T !

%] a f decision was made ROOT %)
hasty

«— REDUCE-LEFT(amod)

(iii)

«— SHIFT

g Arc-Eager

dobj

det

Book the flight through Houston

LEFTARC: Assert a head-dependent relation between s1 and
bl; pop the stack.

RIGHTARC: Assert a head-dependent relation between s1 and
bl; shift bl to be s1.

SHIFT: Remove b1 and push it to be s1.

REDUCE: Pop the stack.

Arc-Eager

Step Stacks~ord List Action Relation Added
0 [rodt] | [book, the, flight, through, houston] | RIGHTARC (root — book)
| [root, boo the, flight, through, houston] SHIFT
2 [root, book, the] | [flight, through, houston] LEFTARC (the < flight)
3 [root, book] | [flight, through, houston] RIGHTARC (book — flight)
4 [root, book, flight] | [through, houston] SHIFT
5 [root, book, flight, through] | [houston] LEFTARC | (through < houston)
6 [root, book, flight] | [houston] RIGHTARC | (flight — houston)
) [root, book, flight, houston] | [] REDUCE
8 [root, book, flight] | [] REDUCE
9 [root, book] | [] REDUCE
10 [root] | [] Done

Beam Search

function DEPENDENCYBEAMPARSE(words, width) returns dependency tree

state < {[root], [words], [], 0.0} ;initial configuration
agenda < (state); initial agenda

while agenda contains non-final states
newagenda < ()
for each state € agenda do
for all {r | t € VALIDOPERATORS(state) } do
child < APPLY(t, state)
newagenda <— ADDTOBEAM(child, newagenda, width)
agenda < newagenda
return BESTOF(agenda)

function ADDTOBEAM(state, agenda, width) returns updated agenda

if LENGTH(agenda) < width then
agenda < INSERT(state, agenda)

else if SCORE(state) > SCORE(WORSTOF(agenda))
agenda <+~ REMOVE(WORSTOF(agenda))
agenda < INSERT(state, agenda)

return agenda

g Parsing algorithms

* Transition based
= greedy choice of local transitions guided by a good classifier
= deterministic
= MaltParser (Nivre et al. 2008), Stack LSTM (Dyer et al. 2015)

= Graph based
= Minimum Spanning Tree for a sentence
= non-projective
= globally optimized
= McDonald et al’s (2005) MSTParser
= Martins et als (2009) Turbo Parser

}& Graph-Based Parsing Algorithms

edge-factored approaches

= Start with a fully-connected directed graph

= Find a Minimum Spanning Tree
= Chu and Liu (1965) and Edmonds (1967) algorithm

g Chu-Liu Edmonds algorithm

function MAXSPANNINGTREE(G=(V,E), root, score) returns spanning tree

F+[]

T +[]

score’]

for each v € Vdo . .
bestInEdge «— argmax,_, ,\c g scorele] } Select best incoming edge for each node
F <« F U bestInEdge
for each e=(u,v) € E do

score’[e] < score[e] — score[best[nEdgel} Subtract its score from all incoming edges

if 7=(V,F) is a spanning tree then return it__
else
C+acyclein F

G’ + CONTRACT(G, C) } Contract nodes if there are cycles
T’ <~ MAXSPANNINGTREE(G’, root, score’)

— Stopping condition

— Recursively compute MST

T+ EXPAND(T",C)
return 7 \
Expand contracted nodes

function CONTRACT(G, C) returns contracted graph

function EXPAND(T, C) returns expanded graph

g Chu-Liu Edmonds algorithm

= Select best incoming edge for each node

Book that ﬂlght

g Chu-Liu Edmonds algorithm

= Subtract its score from all incoming edges

-4

=
O \
R o
i Book Y~ "2 % that \— 0 ¥ fiight
- 12 je_g—\ 7 H
0
A
-7

g Chu-Liu Edmonds algorithm

= Contract nodes if there are cycles

g Chu-Liu Edmonds algorithm

= Recursively compute MST

E{g Chu-Liu Edmonds algorithm

= Expand contracted nodes

Deleted from cycle

g Scores

score(S,e) = w-f

= Wordforms, lemmas, and parts of speech of the headword
and its dependent.

= Corresponding features derived from the contexts before,
after and between the words.

= Word embeddings.

= The dependency relation itself.

= The direction of the relation (to the right or left).

= The distance from the head to the dependent.

E& Summary

= Transition-based
= 4+ Fast
= + Rich features of context
= - Greedy decoding

= Graph-based

= + Exact or close to exact decoding
= - Weaker features

Well-engineered versions of the approaches achieve comparable
accuracy (on English), but make different errors

— combining the strategies results in a substantial boost in performance

