
Undergrad NLP 2022Yulia Tsvetkov

Natural Language Processing
Syntactic parsing

Yulia Tsvetkov

yuliats@cs.washington.edu

1

Constituent (phrase-structure) representation

Dependency representation

Dependency representation

▪ A dependency structure can be defined as a directed graph G,
consisting of
▪ a set V of nodes – vertices, words, punctuation, morphemes
▪ a set A of arcs – directed edges,
▪ a linear precedence order < on V (word order).

▪ Labeled graphs
▪ nodes in V are labeled with word forms (and annotation).
▪ arcs in A are labeled with dependency types
▪ is the set of permissible arc labels;
▪ Every arc in A is a triple (i,j,k), representing a dependency from to with

label .

Dependency vs Constituency

▪ Dependency structures explicitly represent
▪ head-dependent relations (directed arcs),
▪ functional categories (arc labels)
▪ possibly some structural categories (parts of speech)

▪ Phrase (aka constituent) structures explicitly represent
▪ phrases (nonterminal nodes),
▪ structural categories (nonterminal labels)

Dependency vs Constituency trees

Parsing Languages with Flexible Word Order

I prefer the morning flight through Denver

Я предпочитаю утренний перелет через Денвер

I prefer the morning flight through Denver

Я предпочитаю утренний перелет через Денвер
Я предпочитаю через Денвер утренний перелет
Утренний перелет я предпочитаю через Денвер
Перелет утренний я предпочитаю через Денвер
Через Денвер я предпочитаю утренний перелет
Я через Денвер предпочитаю утренний перелет
...

Languages with free word order

Dependency relations

Types of relationships

▪ The clausal relations NSUBJ and DOBJ identify the arguments:
the subject and direct object of the predicate cancel

▪ The NMOD, DET, and CASE relations denote modifiers of the
nouns flights and Houston.

Grammatical functions

Dependency Constraints

▪ Syntactic structure is complete (connectedness)
▪ connectedness can be enforced by adding a special root node

▪ Syntactic structure is hierarchical (acyclicity)
▪ there is a unique pass from the root to each vertex

▪ Every word has at most one syntactic head (single-head
constraint)
▪ except root that does not have incoming arcs

This makes the dependencies a tree

Projectivity

▪ Projective parse
▪ arcs don’t cross each other
▪ mostly true for English

▪ Non-projective structures are needed to account for
▪ long-distance dependencies
▪ flexible word order

Projectivity

▪ Dependency grammars do not normally assume that all
dependency-trees are projective, because some linguistic
phenomena can only be achieved using non-projective trees.

▪ But a lot of parsers assume that the output trees are
projective

▪ Reasons
▪ conversion from constituency to dependency
▪ the most widely used families of parsing algorithms impose

projectivity

Detecting Projectivity/Non-Projectivity

▪ The idea is to use the inorder traversal of the tree: <left-child,
root, right-child>
▪ This is well defined for binary trees. We need to extend it to n-ary

trees.

▪ If we have a projective tree, the inorder traversal will give us
the original linear order.

Non-Projective Statistics

Dependency Treebanks

▪ the major English dependency treebanks converted from the
WSJ sections of the PTB (Marcus et al., 1993)

▪ OntoNotes project (Hovy et al. 2006, Weischedel et al. 2011)
adds conversational telephone speech, weblogs, usenet
newsgroups, broadcast, and talk shows in English, Chinese and
Arabic

▪ annotated dependency treebanks created for morphologically
rich languages such as Czech, Hindi and Finnish, eg Prague
Dependency Treebank (Bejcek et al., 2013)

▪ http://universaldependencies.org/
▪ 150 treebanks, 90 languages

http://universaldependencies.org/

Conversion from constituency to dependency

▪ Xia and Palmer (2001)
▪ mark the head child of each node in a phrase structure, using the

appropriate head rules
▪ make the head of each non-head child depend on the head of the

head-child

Parsing problem

The parsing problem for a dependency parser is to find the
optimal dependency tree y given an input sentence x

This amounts to assigning a syntactic head i

and a label l to every node j corresponding to a

word x
j
 in such a way that the resulting graph

is a tree rooted at the node 0

Parsing problem

▪ This is equivalent to finding a spanning tree in the complete
graph containing all possible arcs

Parsing algorithms

▪ Transition based
▪ greedy choice of local transitions guided by a good classifier
▪ deterministic
▪ MaltParser (Nivre et al. 2008)

▪ Graph based
▪ Minimum Spanning Tree for a sentence
▪ McDonald et al.’s (2005) MSTParser
▪ Martins et al.’s (2009) Turbo Parser

Transition Based Parsing

▪ greedy discriminative dependency parser
▪ motivated by a stack-based approach called shift-reduce

parsing originally developed for analyzing programming
languages (Aho & Ullman, 1972).

▪ Nivre 2003

Configuration

Configuration

Buffer: unprocessed words

Stack: partially
processed words

Oracle: a classifier

Operations

Buffer: unprocessed words

Stack: partially
processed words

Oracle: a classifier

At each step choose:

▪ Shift

Operations

Buffer: unprocessed words

Stack: partially
processed words

Oracle: a classifier

At each step choose:

▪ Shift
▪ Reduce left

Operations

Buffer: unprocessed words

Stack: partially
processed words

Oracle: a classifier

At each step choose:

▪ Shift
▪ LeftArc or Reduce left
▪ RightArc or Reduce right

Shift-Reduce Parsing

Configuration:

▪ Stack, Buffer, Oracle, Set of dependency relations

Operations by a classifier at each step:

▪ Shift
▪ remove w1 from the buffer, add it to the top of the stack as s1

▪ LeftArc or Reduce left
▪ assert a head-dependent relation between s1 and s2
▪ remove s2 from the stack

▪ RightArc or Reduce right
▪ assert a head-dependent relation between s2 and s1
▪ remove s1 from the stack

Shift-Reduce Parsing

Shift-Reduce Parsing

Shift-Reduce Parsing

Shift-Reduce Parsing

Shift-Reduce Parsing

Shift-Reduce Parsing

Shift-Reduce Parsing

Shift-Reduce Parsing

Shift-Reduce Parsing

Shift-Reduce Parsing

Shift-Reduce Parsing

Shift-Reduce Parsing

Shift-Reduce Parsing

Shift-Reduce Parsing

Shift-Reduce Parsing

Shift-Reduce Parsing

Shift-Reduce Parsing

Shift-Reduce Parsing

Shift-Reduce Parsing

Shift-Reduce Parsing

Shift-Reduce Parsing

Configuration:

▪ Stack, Buffer, Oracle, Set of dependency relations

Operations by a classifier at each step:

▪ Shift
▪ remove w1 from the buffer, add it to the top of the stack as s1

▪ LeftArc or Reduce left
▪ assert a head-dependent relation between s1 and s2
▪ remove s2 from the stack

▪ RightArc or Reduce right
▪ assert a head-dependent relation between s2 and s1
▪ remove s1 from the stack

Complexity?

Oracle decisions can
correspond to unlabeled
or labeled arcs

Training an Oracle

▪ Oracle is a supervised classifier that learns a function from the
configuration to the next operation

▪ How to extract the training set?

Training an Oracle

▪ How to extract the training set?
▪ if LeftArc → LeftArc
▪ if RightArc
▪ if s1 dependents have been processed → RightArc

▪ else → Shift

▪ How to extract the training set?
▪ if LeftArc → LeftArc
▪ if RightArc
▪ if s1 dependents have been processed → RightArc

▪ else → Shift

Training an Oracle

Training an Oracle

▪ Oracle is a supervised classifier that learns a function from the
configuration to the next operation

▪ How to extract the training set?
▪ if LeftArc → LeftArc
▪ if RightArc
▪ if s1 dependents have been processed → RightArc

▪ else → Shift

▪ What features to use?

Features

▪ POS, word-forms, lemmas on the stack/buffer
▪ morphological features for some languages
▪ previous relations
▪ conjunction features (e.g. Zhang&Clark’08;

Huang&Sagae’10; Zhang&Nivre’11)

Learning

▪ Before 2014: SVMs,
▪ After 2014: Neural Nets

Chen & Manning 2014

Slides by Danqi Chen
& Chris Manning

Chen & Manning 2014

Chen & Manning 2014

▪ Features
▪ s1, s2, s3, b1, b2, b3
▪ leftmost/rightmost

children of s1 and s2
▪ leftmost/rightmost

grandchildren of
 s1 and s2

▪ POS tags for the above
▪ arc labels for

children/grandchildren

Evaluation of Dependency Parsers

▪ LAS - labeled attachment score
▪ UAS - unlabeled attachment score

Chen & Manning 2014

Follow-up

Stack LSTMs (Dyer et al. 2015)

Arc-Eager

▪ LEFTARC: Assert a head-dependent relation between s1 and
b1; pop the stack.

▪ RIGHTARC: Assert a head-dependent relation between s1 and
b1; shift b1 to be s1.

▪ SHIFT: Remove b1 and push it to be s1.
▪ REDUCE: Pop the stack.

Arc-Eager

Beam Search

Parsing algorithms

▪ Transition based
▪ greedy choice of local transitions guided by a good classifier
▪ deterministic
▪ MaltParser (Nivre et al. 2008), Stack LSTM (Dyer et al. 2015)

▪ Graph based
▪ Minimum Spanning Tree for a sentence
▪ non-projective
▪ globally optimized
▪ McDonald et al.’s (2005) MSTParser
▪ Martins et al.’s (2009) Turbo Parser

Graph-Based Parsing Algorithms

▪ Start with a fully-connected directed graph
▪ Find a Minimum Spanning Tree
▪ Chu and Liu (1965) and Edmonds (1967) algorithm

edge-factored approaches

Chu-Liu Edmonds algorithm

Select best incoming edge for each node

Subtract its score from all incoming edges

Contract nodes if there are cycles

Stopping condition

Recursively compute MST

Expand contracted nodes

Chu-Liu Edmonds algorithm

▪ Select best incoming edge for each node

Chu-Liu Edmonds algorithm

▪ Subtract its score from all incoming edges

Chu-Liu Edmonds algorithm

▪ Contract nodes if there are cycles

Chu-Liu Edmonds algorithm

▪ Recursively compute MST

Chu-Liu Edmonds algorithm

▪ Expand contracted nodes

Scores

▪ Wordforms, lemmas, and parts of speech of the headword
and its dependent.

▪ Corresponding features derived from the contexts before,
after and between the words.

▪ Word embeddings.
▪ The dependency relation itself.
▪ The direction of the relation (to the right or left).
▪ The distance from the head to the dependent.

Summary

▪ Transition-based
▪ + Fast
▪ + Rich features of context
▪ - Greedy decoding

▪ Graph-based
▪ + Exact or close to exact decoding
▪ - Weaker features

Well-engineered versions of the approaches achieve comparable
accuracy (on English), but make different errors

→ combining the strategies results in a substantial boost in performance

